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1 Blocks – Categorical List

Accessing the Libraries
You can access the main library of the Communications Blockset by entering

commlib

in the MATLAB® Command Window.

From the main library, you can access sublibraries by double-clicking their
icons.

On Windows platforms, you can also use the Simulink® Library Browser
to access libraries of the Communications Blockset. To open the Simulink
Library Browser, enter simulink in the MATLAB Command Window.

Source code for the communications blocks can be found in
<MATLAB>\toolbox\commblks\sim\sfun.
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Communications Sources

Communications Sources
Every communication system contains one or more sources. You can open the
Comm Sources library by double-clicking its icon in the main Communications
Blockset library.

The Comms Sources library contains these sublibraries:

• Data Sources, which contains blocks that generate random data to simulate
signal sources.

• Noise Generators, which contains blocks that generate random data to
simulate channel noise.

• Sequence Generators, which contains blocks that generate sequences for
spreading or synchronization in a communication system.

Data Sources
You can open the Data Sources sublibrary by double-clicking its icon in the
Comm Sources library.
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1 Blocks – Categorical List

The table below lists and describes the blocks in the Data Sources sublibrary.
For information about a specific block, see the reference pages that follow.

Bernoulli Binary Generator Generate Bernoulli-distributed
random binary numbers

Poisson Integer Generator Generate Poisson-distributed
random integers

Random Integer Generator Generate integers randomly
distributed in range [0, M-1]

Noise Generators
You can open the Noise Generators sublibrary by double-clicking its icon in
the Comm Sources library.
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Communications Sources

The table below lists and describes the blocks in the Noise Generators
sublibrary. For information about a specific block, see the reference pages
that follow.

Binary Error Pattern Generator Generate binary vector while
controlling number of 1s

Gaussian Noise Generator Generate Gaussian distributed noise
with given mean and variance values

Rayleigh Noise Generator Generate Rayleigh distributed noise

Rician Noise Generator Generate Rician distributed noise

Uniform Noise Generator Generate uniformly distributed noise
between upper and lower bounds

Sequence Generators
You can open the Sequence Generators sublibrary by double-clicking its icon
in Comm Sources library.
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The table below lists and describes the blocks in the Sequence Generators
sublibrary. For information about a specific block, see the reference pages
that follow.

Barker Code Generator Generate Barker Code

Gold Sequence Generator Generate Gold sequence from set of
sequences

Hadamard Code Generator Generate Hadamard code from
orthogonal set of codes

Kasami Sequence Generator Generate Kasami sequence from set
of Kasami sequences

OVSF Code Generator Generate orthogonal variable
spreading factor (OVSF) code from
set of orthogonal codes

PN Sequence Generator Generate pseudonoise sequence

Walsh Code Generator Generate Walsh code from
orthogonal set of codes
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Communications Sinks

Communications Sinks
The Comm Sinks library provides sinks and display devices that facilitate
analysis of communication system performance. You can open the Comm
Sinks library by double-clicking its icon in the main Communications Blockset
library.

The table below lists and describes the blocks in the Comm Sinks library. For
information about a specific block, see the reference pages that follow.

Discrete-Time Eye Diagram Scope Display multiple traces of modulated
signal

Discrete-Time Scatter Plot Scope Display the in-phase and quadrature
components of modulated signal
constellation

Discrete-Time Signal Trajectory
Scope

Plot modulated signal’s in-phase
component versus its quadrature
component

Error Rate Calculation Compute bit error rate or symbol
error rate of input data
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Source Coding
This blockset supports companders and scalar quantization. You can open the
Source Coding library by double-clicking its icon in the main Communications
Blockset library.

The table below lists and describes the blocks in the Source Coding library.
For information about a specific block, see the reference pages that follow.

A-Law Compressor Implement A-law compressor for
source coding

A-Law Expander Implement A-law expander for
source coding

Differential Decoder Decode binary signal using
differential coding

Differential Encoder Encode binary signal using
differential coding

Mu-Law Compressor Implement µ-law compressor for
source coding

Mu-Law Expander Implement µ-law expander for
source coding
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Source Coding

Quantizing Decoder Decode quantization index according
to codebook

Quantizing Encoder Quantize signal using partition and
codebook
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Error Detection and Correction
The Error Detection and Correction library contains three sublibraries:

• Block, which contains blocks that implement the encoding and decoding of
linear, cyclic, BCH, Hamming, and Reed-Solomon codes

• Convolutional, which contains blocks that implement convolutional
encoding and decoding

• CRC, which contains blocks that append cyclic redundancy check (CRC)
bits to data, and detect errors

The main Error Detection and Correction library appears below. You can
open it by double-clicking its icon in the main Communications Blockset
library. Each icon in the Error Detection and Correction window represents
a sublibrary. In Simulink, double-clicking one of these icons opens the
sublibrary.

Block Coding
You can open the Block sublibrary by double-clicking the Block icon in the
main Error Detection and Correction library.
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Error Detection and Correction

The table below lists and describes the blocks in the Block sublibrary of the
Error Detection and Correction library. For information about a specific block,
see the reference pages that follow.

BCH Decoder Decode BCH code to recover binary
vector data

BCH Encoder Create BCH code from binary vector
data

Binary Cyclic Decoder Decode systematic cyclic code to
recover binary vector data

Binary Cyclic Encoder Create systematic cyclic code from
binary vector data

Binary Linear Decoder Decode linear block code to recover
binary vector data

Binary Linear Encoder Create linear block code from binary
vector data
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Binary-Input RS Encoder Create Reed-Solomon code from
binary vector data

Binary-Output RS Decoder Decode Reed-Solomon code to recover
binary vector data

Hamming Decoder Decode Hamming code to recover
binary vector data

Hamming Encoder Create Hamming code from binary
vector data

Integer-Input RS Encoder Create Reed-Solomon code from
integer vector data

Integer-Output RS Decoder Decode Reed-Solomon code to recover
integer vector data

Convolutional Coding
You can open the Convolutional sublibrary by double-clicking the
Convolutional icon in the main Error Detection and Correction library.

The table below lists and describes the blocks in the Convolutional sublibrary
of the Error Detection and Correction library. For information about a specific
block, see the reference pages that follow.
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Error Detection and Correction

APP Decoder Decode convolutional code using
the a posteriori probability (APP)
method

Convolutional Encoder Create convolutional code from
binary data

Viterbi Decoder Decode convolutionally encoded data
using Viterbi algorithm

Cyclic Redundancy Check Coding
You can open the CRC sublibrary by double-clicking the CRC icon in the main
Error Detection and Correction library.

The table below lists and describes the blocks in the CRC sublibrary of the
Error Detection and Correction library. For information about a specific block,
see the reference pages that follow.

CRC-N Generator Generate CRC bits according to CRC
method and append to input data
frames

CRC-N Syndrome Detector Detect errors in input data frames
according to selected CRC method
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General CRC Generator Generate CRC bits according to
generator polynomial and append to
input data frames

General CRC Syndrome Detector Detect errors in input data frames
according to generator polynomial
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Interleaving

Interleaving
The Interleaving library contains two sublibraries:

• Block

• Convolutional

The main Interleaving library appears below. You can open it by
double-clicking its icon in the main Communications Blockset library. Each
icon in the Interleaving window represents a sublibrary. In Simulink,
double-clicking one of these icons opens the sublibrary.

Block Interleaving
You can open the Block sublibrary by double-clicking the Block icon in the
main Interleaving library.
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1 Blocks – Categorical List

The table below lists and describes the blocks in the Block sublibrary of the
Interleaving library. For information about a specific block, see the reference
pages that follow.

Algebraic Deinterleaver Restore ordering of input symbols
using algebraically derived
permutation

Algebraic Interleaver Reorder input symbols using
algebraically derived permutation
table

General Block Deinterleaver Restore ordering of symbols in input
vector

1-16



Interleaving

General Block Interleaver Reorder symbols in input vector

Matrix Deinterleaver Permute input symbols by filling a
matrix by columns and emptying it
by rows

Matrix Helical Scan Deinterleaver Restore ordering of input symbols by
filling a matrix along diagonals

Matrix Helical Scan Interleaver Permute input symbols by selecting
matrix elements along diagonals

Matrix Interleaver Permute input symbols by filling a
matrix by rows and emptying it by
columns

Random Deinterleaver Restore ordering of input symbols
using random permutation

Random Interleaver Reorder input symbols using random
permutation

Convolutional Interleaving
You can open the Convolutional sublibrary by double-clicking the
Convolutional icon in the main Interleaving library.
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The table below lists and describes the blocks in the Convolutional sublibrary
of the Interleaving library. For information about a specific block, see the
reference pages that follow.

Convolutional Deinterleaver Restore ordering of symbols that
were permuted using shift registers

Convolutional Interleaver Permute input symbols using set of
shift registers

General Multiplexed Deinterleaver Restore ordering of symbols using
specified-delay shift registers

General Multiplexed Interleaver Permute input symbols using set of
shift registers with specified delays

Helical Deinterleaver Restore ordering of symbols
permuted by helical interleaver

Helical Interleaver Permute input symbols using helical
array

1-18



Modulation

Modulation
The Modulation library contains these sublibraries, each of which addresses a
category of modulation:

• Digital Baseband Modulation

• Analog Passband Modulation

The main Modulation library appears below. You can open it by double-clicking
its icon in the main Communications Blockset library. Each icon in the
Modulation window represents a sublibrary. In Simulink, double-clicking one
of these icons opens the sublibrary.

Digital Baseband Modulation
You can open the Digital Baseband sublibrary of Modulation by double-clicking
the Digital Baseband icon in the main Modulation library.

Digital Baseband is further divided into sublibraries according to specific
modulation techniques:
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1 Blocks – Categorical List

• Amplitude modulation (PAM, QAM)

• Phase modulation (PSK, DPSK)

• Frequency modulation (FSK)

• Continuous phase modulation (MSK, GMSK)

• Trellis-coded modulation (TCM)

The figures and tables below show and list the blocks in the method-specific
sublibraries. For information about a specific block, see the reference pages
that follow.

AM Sublibrary

General QAM Demodulator
Baseband

Demodulate QAM-modulated data

General QAM Modulator Baseband Modulate using quadrature
amplitude modulation

M-PAM Demodulator Baseband Demodulate PAM-modulated data
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Modulation

M-PAM Modulator Baseband Modulate using M-ary pulse
amplitude modulation

Rectangular QAM Demodulator
Baseband

Demodulate
rectangular-QAM-modulated
data

Rectangular QAM Modulator
Baseband

Modulate using rectangular
quadrature amplitude modulation

PM Sublibrary

BPSK Demodulator Baseband Demodulate BPSK-modulated data

BPSK Modulator Baseband Modulate using binary phase shift
keying method

DBPSK Demodulator Baseband Demodulate DBPSK-modulated data
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DBPSK Modulator Baseband Modulate using differential binary
phase shift keying method

DQPSK Demodulator Baseband Demodulate DQPSK-modulated
data

DQPSK Modulator Baseband Modulate using differential
quaternary phase shift keying
method

M-DPSK Demodulator Baseband Demodulate DPSK-modulated data

M-DPSK Modulator Baseband Modulate using M-ary differential
phase shift keying method

M-PSK Demodulator Baseband Demodulate PSK-modulated data

M-PSK Modulator Baseband Modulate using M-ary phase shift
keying method

OQPSK Demodulator Baseband Demodulate OQPSK-modulated
data

OQPSK Modulator Baseband Modulate using offset quadrature
phase shift keying method

QPSK Demodulator Baseband Demodulate QPSK-modulated data

QPSK Modulator Baseband Modulate using the quaternary
phase shift keying method

FM Sublibrary
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Modulation

M-FSK Demodulator Baseband Demodulate FSK-modulated data

M-FSK Modulator Baseband Modulate using M-ary frequency
shift keying method

CPM Sublibrary

CPFSK Demodulator Baseband Demodulate CPFSK-modulated data

CPFSK Modulator Baseband Modulate using continuous phase
frequency shift keying method

CPM Demodulator Baseband Demodulate CPM-modulated data

CPM Modulator Baseband Modulate using continuous phase
modulation

GMSK Demodulator Baseband Demodulate GMSK-modulated data
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GMSK Modulator Baseband Modulate using Gaussian minimum
shift keying method

MSK Demodulator Baseband Demodulate MSK-modulated data

MSK Modulator Baseband Modulate using minimum shift
keying method

TCM Sublibrary

General TCM Decoder Decode trellis-coded modulation
data, mapped using arbitrary
constellation

General TCM Encoder Convolutionally encode binary
data and map using arbitrary
constellation

M-PSK TCM Decoder Decode trellis-coded modulation
data, modulated using PSK method
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Modulation

M-PSK TCM Encoder Convolutionally encode binary data
and modulate using PSK method

Rectangular QAM TCM Decoder Decode trellis-coded modulation
data, modulated using QAM method

Rectangular QAM TCM Encoder Convolutionally encode binary data
and modulate using QAM method

Analog Passband Modulation
You can open the Analog Passband sublibrary of Modulation by double-clicking
the Analog Passband icon in the main Modulation library.

1-25



1 Blocks – Categorical List

The table below lists and describes the blocks in the Analog Passband
sublibrary of the Modulation library. For information about a specific block,
see the reference pages that follow.

DSB AM Demodulator Passband Demodulate DSB-AM-modulated
data

DSB AM Modulator Passband Modulate using double-sideband
amplitude modulation

DSBSC AM Demodulator Passband Demodulate DSBSC-AM-modulated
data

DSBSC AM Modulator Passband Modulate using double-sideband
suppressed-carrier amplitude
modulation

FM Demodulator Passband Demodulate FM-modulated data

FM Modulator Passband Modulate using frequency
modulation

PM Demodulator Passband Demodulate PM-modulated data

PM Modulator Passband Modulate using phase modulation

SSB AM Demodulator Passband Demodulate SSB-AM-modulated
data

SSB AM Modulator Passband Modulate using single-sideband
amplitude modulation
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Communications Filters

Communications Filters
You can open the Comm Filters library by double-clicking its icon in the main
Communications Blockset library.

The table below lists and describes the blocks in the Comm Filters library.
For information about a specific block, see the reference pages that follow.

Gaussian Filter Filter input signal, possibly
downsampling, using Gaussian FIR
filter

Ideal Rectangular Pulse Filter Shape input signal using ideal
rectangular pulses

Integrate and Dump Integrate discrete-time signal,
resetting to zero periodically

Raised Cosine Receive Filter Filter input signal, possibly
downsampling, using raised cosine
FIR filter
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Raised Cosine Transmit Filter Upsample and filter input signal
using raised cosine FIR filter

Windowed Integrator Integrate over time window of fixed
length
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Channels
The Channels library provides blocks for modeling channel impairments.
You can open the Channels library by double-clicking its icon in the main
Communications Blockset library.

The table below lists and describes the blocks in the Channels library. For
information about a specific block, see the reference pages that follow.

AWGN Channel Add white Gaussian noise to input
signal

Binary Symmetric Channel Introduce binary errors

Multipath Rayleigh Fading Channel Simulate multipath Rayleigh fading
propagation channel

Rician Fading Channel Simulate Rician fading propagation
channel
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RF Impairments
The RF Impairments library provides blocks that simulate radio frequency
(RF) impairments at the receiver. You can open the RF Impairments library
by double-clicking its icon in the main Communications Blockset library.

The table below lists and describes the blocks in the RF Impairments library.
For information about a specific block, see the reference pages that follow.

Free Space Path Loss Reduce amplitude of input signal by
amount specified

I/Q Imbalance Create complex baseband model
of signal impairments caused by
imbalances between in-phase and
quadrature receiver components

Memoryless Nonlinearity Apply memoryless nonlinearity to
complex baseband signal.

Phase Noise Apply receiver phase noise to
complex baseband signal
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RF Impairments

Phase/Frequency Offset Apply phase and frequency offsets to
complex baseband signal.

Receiver Thermal Noise Apply receiver thermal noise to
complex baseband signal
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Synchronization
The Synchronization library provides blocks that help you perform
synchronization at a receiver. You can open the Synchronization library by
double-clicking its icon in the main Communications Blockset library.

The Synchronization library contains these sublibraries:

• Carrier Phase Recovery, which contains algorithms for recovering the
carrier phase of a received signal

• Timing Phase Recovery, which contains algorithms for recovering the
symbol timing phase of a received signal

• Synchronization Components, which contains blocks that you can use to
build larger systems for synchronization
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Synchronization

Carrier Phase Recovery

The table below lists and describes the blocks in the Carrier Phase Recovery
library. For information about a specific block, see the reference pages that
follow.

CPM Phase Recovery Recover carrier phase using
2P-Power method

M-PSK Phase Recovery Recover carrier phase using M-Power
method
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Timing Phase Recovery

The table below lists and describes the blocks in the Timing Phase Recovery
library. For information about a specific block, see the reference pages that
follow.

Early-Late Gate Timing Recovery Recover symbol timing phase using
early-late gate method

Gardner Timing Recovery Recover symbol timing phase using
Gardner’s method

MSK-Type Signal Timing Recovery Recover symbol timing phase using
fourth-order nonlinearity method

Mueller-Muller Timing Recovery Recover symbol timing phase using
Mueller-Muller method

Squaring Timing Recovery Recover symbol timing phase using
squaring method
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Synchronization Components

The table below lists and describes the blocks in the Synchronization
Components library. For information about a specific block, see the reference
pages that follow.

Baseband PLL Implement baseband phase-locked
loop

Charge Pump PLL Implement charge pump
phase-locked loop using digital
phase detector

Continuous-Time VCO Implement voltage-controlled
oscillator

Discrete-Time VCO Implement voltage-controlled
oscillator in discrete time

Linearized Baseband PLL Implement linearized version of a
baseband phase-locked loop

Phase-Locked Loop Implement phase-locked loop to
recover phase of input signal
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Equalizers
You can open the Equalizers library by double-clicking its icon in the main
Communications Blockset library.

The table below lists and describes the blocks in the Equalizers library. For
information about a specific block, see the reference pages that follow.
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Equalizers

CMA Equalizer Equalize using constant modulus
algorithm

LMS Decision Feedback Equalizer Equalize using decision feedback
equalizer that updates weights with
LMS algorithm

LMS Linear Equalizer Equalize using linear equalizer
that updates weights with LMS
algorithm

MLSE Equalizer Equalize using Viterbi algorithm

Normalized LMS Decision Feedback
Equalizer

Equalize using decision feedback
equalizer that updates weights with
normalized LMS algorithm

Normalized LMS Linear Equalizer Equalize using linear equalizer that
updates weights with normalized
LMS algorithm

RLS Decision Feedback Equalizer Equalize using decision feedback
equalizer that updates weights with
RLS algorithm

RLS Linear Equalizer Equalize using linear equalizer
that updates weights using RLS
algorithm

Sign LMS Decision Feedback
Equalizer

Equalize using decision feedback
equalizer that updates weights with
signed LMS algorithm

Sign LMS Linear Equalizer Equalize using linear equalizer that
updates weights with signed LMS
algorithm

Variable Step LMS Decision
Feedback Equalizer

Equalize using decision feedback
equalizer that updates weights with
variable-step-size LMS algorithm

Variable Step LMS Linear Equalizer Equalize using linear equalizer
that updates weights with
variable-step-size LMS algorithm
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Sequence Operations
You can open the Sequence Operations library by double-clicking its icon in
the main Communications Blockset library.

The table below lists and describes the Communications Blockset blocks in
the Sequence Operations library. For information about a specific block, see
the reference pages that follow.

Deinterlacer Distribute elements of input vector
alternately between two output
vectors

Derepeat Reduce sampling rate by averaging
consecutive samples

Descrambler Descramble input signal

Insert Zero Distribute input elements in output
vector
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Interlacer Alternately select elements from
two input vectors to generate output
vector

Puncture Output elements which correspond
to 1s in binary Puncture vector

Scrambler Scramble the input signal

The Repeat block, from the Signal Processing Blockset, is also included in
this library for convenience.
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1 Blocks – Categorical List

Utility Blocks
You can open the Utility Blocks library by double-clicking its icon in the main
Communications Blockset library.

The table below lists and describes the Communications Blockset blocks in
the Utility Blocks library. For information about a specific block, see the
reference pages that follow.

Align Signals Align two signals by finding delay
between them

Bipolar to Unipolar Converter Map bipolar signal into unipolar
signal in range [0, M-1]

Bit to Integer Converter Map vector of bits to corresponding
vector of integers

Complex Phase Difference Output phase difference between
two complex input signals
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Complex Phase Shift Shift phase of complex input signal
by second input value

Data Mapper Map integer symbols from one coding
scheme to another

Find Delay Find delay between two signals

Integer to Bit Converter Map vector of integers to vector of
bits

Unipolar to Bipolar Converter Map unipolar signal in range [0, M-1]
into bipolar signal

The dB Conversion block, from the Signal Processing Blockset, is also
included in this library for convenience.
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A-Law Compressor

Purpose Implement A-law compressor for source coding

Library Source Coding

Description The A-Law Compressor block implements an A-law compressor for the
input signal. The formula for the A-law compressor is
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where A is the A-law parameter of the compressor, V is the peak signal
magnitude for x, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

The most commonly used A value is 87.6.

The input can have any shape or frame status. This block processes
each vector element independently.

Dialog
Box

A value
The A-law parameter of the compressor.
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A-Law Compressor

Peak signal magnitude
The peak value of the input signal. This is also the peak value of
the output signal.

Pair Block A-Law Expander

See Also Mu-Law Compressor

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
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A-Law Expander

Purpose Implement A-law expander for source coding

Library Source Coding

Description The A-Law Expander block recovers data that the A-Law Compressor
block compressed. The formula for the A-law expander, shown below, is
the inverse of the compressor function.
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The input can have any shape or frame status. This block processes
each vector element independently.

Dialog
Box

A value
The A-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value of
the output signal.
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A-Law Expander

Match these parameters to the ones in the corresponding A-Law
Compressor block.

Pair Block A-Law Compressor

See Also Mu-Law Expander

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
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Algebraic Deinterleaver

Purpose Restore ordering of input symbols using algebraically derived
permutation

Library Block sublibrary of Interleaving

Description The Algebraic Deinterleaver block restores the original ordering of a
sequence that was interleaved using theAlgebraic Interleaver block. In
typical usage, the parameters in the two blocks have the same values.

The Number of elements parameter, N, indicates how many numbers
are in the input vector. If the input is frame-based, then it must be a
column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Type parameter indicates the algebraic method that the block
uses to generate the appropriate permutation table. Choices are
Takeshita-Costello and Welch-Costas. Each of these methods has
parameters and restrictions that are specific to it; these are described
on the reference page for theAlgebraic Interleaver block.
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Dialog
Box

Type
The type of permutation table that the block uses for
deinterleaving. Choices are Takeshita-Costello and
Welch-Costas.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the corresponding interleaver’s
cycle vector. This field appears only if Type is set to
Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating the
corresponding interleaver’s permutation table. This field appears
only if Type is set to Takeshita-Costello.
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Primitive element
An element of order N in the finite field GF(N+1). This field
appears only if Type is set to Welch-Costas.

Pair Block Algebraic Interleaver

See Also General Block Deinterleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic
Interleavers for Turbo-Codes." Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. 419.
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Algebraic Interleaver

Purpose Reorder input symbols using algebraically derived permutation table

Library Block sublibrary of Interleaving

Description The Algebraic Interleaver block rearranges the elements of its input
vector using a permutation that is algebraically derived. The Number
of elements parameter, N, indicates how many numbers are in the
input vector. If the input is frame-based, then it must be a column
vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Type parameter indicates the algebraic method that the block
uses to generate the appropriate permutation table. Choices are
Takeshita-Costello and Welch-Costas. Each of these methods has
parameters and restrictions that are specific to it:

• If Type is set to Welch-Costas, then N+1 must be prime. The
Primitive element parameter is an integer, A, between 1 and N
that represents a primitive element of the finite field GF(N+1). This
means that every nonzero element of GF(N+1) can be expressed as
A raised to some integer power.

In a Welch-Costas interleaver, the permutation maps the integer k
to mod(Ak,N+1) - 1.

• If Type is set to Takeshita-Costello, then N must be 2m for some
integer m. The Multiplicative factor parameter, h, must be an
odd integer less than N. The Cyclic shift parameter, k, must be a
nonnegative integer less than N.

A Takeshita-Costello interleaver uses a length-N cycle vector whose
nth element is

mod(k*(n-1)*n/2, N)

for integers n between 1 and N. The block creates a permutation
vector by listing, for each element of the cycle vector in ascending
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order, one plus the element’s successor. The interleaver’s actual
permutation table is the result of shifting the elements of the
permutation vector left by the Cyclic shift parameter. (The block
performs all computations on numbers and indices modulo N.)

Dialog
Box

Type
The type of permutation table that the block uses for interleaving.

Number of elements
The number of elements, N, in the input vector.

Multiplicative factor
The factor used to compute the interleaver’s cycle vector. This
field appears only if Type is set to Takeshita-Costello.

Cyclic shift
The amount by which the block shifts indices when creating
the permutation table. This field appears only if Type is set to
Takeshita-Costello.
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Primitive element
An element of order N in the finite field GF(N+1). This field
appears only if Type is set to Welch-Costas.

Pair Block Algebraic Deinterleaver

See Also General Block Interleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.

[2] Takeshita, O. Y. and D. J. Costello, Jr. "New Classes Of Algebraic
Interleavers for Turbo-Codes." Proc. 1998 IEEE International
Symposium on Information Theory, Boston, Aug. 16-21, 1998. 419.
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Align Signals

Purpose Align two signals by finding delay between them

Library Utility Blocks

Description The Align Signals block aligns a signal with a delayed, and possibly
distorted, version of itself. The block is particularly useful when you
want to compare a transmitted and received signal to find the bit error
rate, but do not know the delay in the received signal.

The input port labeled s1 receives the original signal, while the input
port labeled s2 receives the delayed version of the signal. The two input
signals must have the same sample times. The block calculates the
delay between the two signal, and then

• Delays the first signal, s1, by the calculated value, and outputs it
through the port labeled s1 del.

• Outputs the second signal s2 without change through the port
labeled s2.

• Outputs the delay value through the port labeled delay.

See “Computing Delays” in the Communications Blockset online
documentation for more information about signal delays.

The block’s Correlation window length parameter specifies
how many samples of the signals the block uses to calculate the
cross-correlation. The delay output is a nonnegative integer less than
the Correlation window length.

You can make the Align Signals block stop updating the delay after it
computes the same delay value for a specified number of samples. To
do so, select the Disable recurring updates check box, and enter a
positive integer in the Number of constant delay outputs to disable
updates field. For example, if you set Number of constant delay
outputs to disable updates to 20, the block will stop recalculating
and updating the delay after it calculates the same value 20 times in
succession. Disabling recurring updates causes the simulation to run
faster after the target number of constant delays occurs.
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Tips for Using the Block Effectively

• Set the Correlation window length parameter sufficiently large so
that the computed delay eventually stabilizes at a constant value. If
the computed delay is not constant, you should increase Correlation
window length. If the increased value of Correlation window
length exceeds the duration of the simulation, then you should also
increase the duration of the simulation accordingly.

• If the cross-correlation between the two signals is broad, then
Correlation window length should be much larger than the
expected delay, or else the algorithm might stabilize at an incorrect
value. For example, a CPM signal has a broad autocorrelation, so
it has a broad cross-correlation with a delayed version of itself. In
this case, the Correlation window length value should be much
larger than the expected delay.

• If the block calculates a delay that is greater than 75 percent of
Correlation window length, the signal s1 is probably delayed
relative to the signal s2. In this case, you should switch the signal
lines leading into the two input ports.

• If you use the Align Signals block with the Error Rate Calculation
block, you should set the Receive delay parameter of the Error Rate
Calculation block to 0 because the Align Signals block compensates
for the delay. Also, you might want to set the Error Rate Calculation
block’s Computation delay parameter to a nonzero value to account
for the possibility that the Align Signals block takes a nonzero
amount of time to stabilize on the correct amount by which to delay
one of the signals.

Examples See the“Computing Delays” section of Using the Communications
Blockset for an example that uses the Align Signals block in conjunction
with the Error Rate Calculation block.

See “Setting the Correlation Window Length” on page 2-183, on the
reference page for the Find Delay block, for an example that illustrates
how to set the correlation window length properly.
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Dialog
Box

Correlation window length
The number of samples the block uses to calculate the
cross-correlations of the two signals.

Disable recurring updates
Selecting this option causes the block to stop computing the delay
after it computes the same delay value for a specified number
of samples.

Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must
compute the same delay before ceasing to update. This field
appears only if Disable recurring updates is selected.

Algorithm The Align Signals block finds the delay by calculating the
cross-correlations of the first signal with time-shifted versions of the
second signal, and then finding the index at which the cross-correlation
is maximized.

See Also Find Delay, Error Rate Calculation
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APP Decoder

Purpose Decode convolutional code using the a posteriori probability (APP)
method

Library Convolutional sublibrary of Channel Coding

Description The APP Decoder block performs a posteriori probability (APP) decoding
of a convolutional code.

Inputs and Outputs

The input L(u) represents the sequence of log-likelihoods of encoder
input bits, while the input L(c) represents the sequence of log-likelihoods
of code bits. The outputs L(u) and L(c) are updated versions of these
sequences, based on information about the encoder.

If the convolutional code uses an alphabet of 2n possible symbols, then
this block’s L(c) vectors have length Q*n for some positive integer Q.
Similarly, if the decoded data uses an alphabet of 2k possible output
symbols, then this block’s L(u) vectors have length Q*k. The integer Q
is the number of frames that the block processes in each step.

The inputs can be either:

• Sample-based vectors having the same dimension and orientation,
with Q = 1

• Frame-based column vectors with any positive integer for Q

If you only need the input L(c) and output L(u), then you can attach a
Simulink Ground block to the input L(u) and a Simulink Terminator
block to the output L(c).

This block accepts single and double data types. Both inputs, however,
must be of the same type. The output data type is the same as the
input data type.

Specifying the Encoder

To define the convolutional encoder that produced the coded input,
use the Trellis structure parameter. This parameter is a MATLAB
structure whose format is described in “Trellis Description of a
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Convolutional Encoder” in the Communications Toolbox documentation.
You can use this parameter field in two ways:

• If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is preferable because it causes Simulink to
spend less time updating the diagram at the beginning of each
simulation, compared to the usage in the next bulleted item.

• If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to

poly2trellis(7,[171 133],171)

To indicate how the encoder treats the trellis at the beginning and
end of each frame, set the Termination method parameter to either
Truncated or Terminated. The Truncated option indicates that the
encoder resets to the all-zeros state at the beginning of each frame,
while the Terminated option indicates that the encoder forces the trellis
to end each frame in the all-zeros state. If you use theConvolutional
Encoder block with the Reset parameter set to On each frame, then
use the Truncated option in this block.

Specifying Details of the Algorithm

You can control part of the decoding algorithm using the Algorithm
parameter. The True APP option implements a posteriori probability. To
gain speed, both the Max* and Max options approximate expressions like

log exp( )ai
i
∑

by other quantities. The Max option uses max{ai} as the approximation,
while the Max* option uses max{ai} plus a correction term.
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The Max* option enables the Scaling bits parameter in the dialog.
This parameter is the number of bits by which the block scales the data
it processes internally. You can use this parameter to avoid losing
precision during the computations. It is especially appropriate if your
implementation uses fixed-point components. For more information
about the Max* option, see the article by Viterbi among the references
listed below.

Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Termination method
Either Truncated or Terminated. This parameter indicates how
the convolutional encoder treats the trellis at the beginning and
end of frames.

Algorithm
Either True APP, Max*, or Max.
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Number of scaling bits
An integer between 0 and 8 that indicates by how many bits the
decoder scales data in order to avoid losing precision. This field is
active only when Algorithm is set to Max*.

See Also Viterbi Decoder, Convolutional Encoder; poly2trellis
(Communications Toolbox)

References [1] Benedetto, Sergio and Guido Montorsi. "Performance of Continuous
and Blockwise Decoded Turbo Codes." IEEE Communications Letters,
vol. 1, May 1997. 77-79.

[2] Benedetto, S., G. Montorsi, D. Divsalar, and F. Pollara. "A
Soft-Input Soft-Output Maximum A Posterior (MAP) Module to Decode
Parallel and Serial Concatenated Codes." JPL TDA Progress Report,
vol. 42-127, November 1996. [This electronic journal is available at
http://tmo.jpl.nasa.gov/tmo/progress_report/index.html.]

[3] Viterbi, Andrew J. "An Intuitive Justification and a Simplified
Implementation of the MAP Decoder for Convolutional Codes." IEEE
Journal on Selected Areas in Communications, vol. 16, February 1998.
260-264.
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AWGN Channel

Purpose Add white Gaussian noise to input signal

Library Channels

Description The AWGN Channel block adds white Gaussian noise to a real or
complex input signal. When the input signal is real, this block adds
real Gaussian noise and produces a real output signal. When the input
signal is complex, this block adds complex Gaussian noise and produces
a complex output signal. This block inherits its sample time from the
input signal.

This block uses the Signal Processing Blockset’s Random Source block to
generate the noise. The Initial seed parameter in this block initializes
the noise generator. Initial seed can be either a scalar or a vector
whose length matches the number of channels in the input signal. For
details on Initial seed, see the Random Source block reference page in
the Signal Processing Blockset documentation set.

The signal inputs can only be of type single or double. The port data
types are inherited from the signals that drive the block.

Frame-Based Processing and Input Dimensions

This block can process multichannel signals that are frame-based or
sample-based. The guidelines below indicate how the block interprets
your data, depending on the data’s shape and frame status:

• If your input is a sample-based scalar, then the block adds scalar
Gaussian noise to your signal.

• If your input is a sample-based vector or a frame-based row vector,
then the block adds independent Gaussian noise to each channel.

• If your input is a frame-based column vector, then the block adds a
frame of Gaussian noise to your single-channel signal.

• If your input is a frame-based m-by-n matrix, then the block adds
a length-m frame of Gaussian noise independently to each of the
n channels.
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The input cannot be a sample-based m-by-n matrix if both m and n
are greater than 1.

Specifying the Variance Directly or Indirectly

You can specify the variance of the noise generated by the AWGN
Channel block using one of these modes:

• Signal to noise ratio (Eb/No), where the block calculates the
variance from these quantities that you specify in the dialog box:

- Eb/No, the ratio of bit energy to noise power spectral density

- Number of bits per symbol

- Input signal power, the power of the input symbols

- Symbol period

• Signal to noise ratio (Es/No), where the block calculates the
variance from these quantities that you specify in the dialog box:

- Es/No, the ratio of signal energy to noise power spectral density

- Input signal power, the power of the input symbols

- Symbol period

• Signal to noise ratio (SNR), where the block calculates the
variance from these quantities that you specify in the dialog box:

- SNR, the ratio of signal power to noise power

- Input signal power, the power of the input samples

• Variance from mask, where you specify the variance in the dialog
box. The value must be positive.

• Variance from port, where you provide the variance as an input
to the block. The variance input must be positive, and its sampling
rate must equal that of the input signal. If the first input signal is
sample-based, then the variance input must be sample-based. If the
first input signal is frame-based, then the variance input can be
either frame-based with exactly one row, or sample-based.
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In both Variance from mask mode and Variance from port mode,
these rules describe how the block interprets the variance:

• If the variance is a scalar, then all signal channels are uncorrelated
but share the same variance.

• If the variance is a vector whose length is the number of channels in
the input signal, then each element represents the variance of the
corresponding signal channel.

Note If you apply complex input signals to the AWGN Channel block,
then it adds complex zero-mean Gaussian noise with the calculated
or specified variance. The variance of each of the quadrature
components of the complex noise is half of the calculated or specified
value.

Relationship Among Eb/No, Es/No, and SNR Modes

For complex input signals, the AWGN Channel block relates Eb/N0,
Es/N0, and SNR according to the following equations:

Es/N0 = (Tsym/Tsamp) · SNR

Es/N0 = Eb/N0 + 10log10(k) in dB

where

• Es = Signal energy (Joules)

• Eb = Bit energy (Joules)

• N0 = Noise power spectral density (Watts/Hz)

• Tsym is the Symbol period parameter of the block in Es/No mode

• k is the number of information bits per input symbol

• Tsamp is the inherited sample time of the block, in seconds
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For real signal inputs, the AWGN Channel block relates Es/N0 and SNR
according to the following equation:

Es/N0 = 0.5 (Tsym/Tsamp) · SNR

Note that the equation for the real case differs from the corresponding
equation for the complex case by a factor of 2. This is so because the
block uses a noise power spectral density of N0/2 Watts/Hz for real input
signals, versus N0 Watts/Hz for complex signals.

For more information about these quantities, see “Describing the
Noise Level of an AWGN Channel” in the Communications Toolbox
documentation.

Tuning Parameters in an RSim Executable (Real-Time Workshop)

If you use the Real-Time Workshop rapid simulation (RSim) target
to build an RSim executable, then you can tune selected parameters
without recompiling the model. This is useful for Monte Carlo
simulations in which you run the simulation multiple times (perhaps
on multiple computers) with different amounts of noise. The table
below indicates, for different modes of the block, which parameters
are tunable.

Mode Tunable Parameters

Eb/No Eb/No, Input signal power

Es/No Es/No, Input signal power

SNR SNR, Input signal power

Variance from mask Variance

2-22



AWGN Channel

Dialog
Box

Initial seed
The seed for the Gaussian noise generator.

Mode
The mode by which you specify the noise variance: Signal to
noise ratio (Eb/No), Signal to noise ratio (Es/No),
Signal to noise ratio (SNR), Variance from mask, or
Variance from port.

Eb/No (dB)
The ratio of bit energy per symbol to noise power spectral density,
in decibels. This field appears only if Mode is set to Eb/No.

Es/No (dB)
The ratio of signal energy per symbol to noise power spectral
density, in decibels. This field appears only if Mode is set to
Es/No.
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SNR (dB)
The ratio of signal power to noise power, in decibels. This field
appears only if Mode is set to SNR.

Number of bits per symbol
The number of bits in each input symbol. This field appears only
if Mode is set to Eb/No.

Input signal power (watts)
The root mean square power of the input symbols (if Mode is
Eb/No or Es/No) or input samples (if Mode is SNR), in watts. This
field appears only if Mode is set to Eb/No, Es/No, or SNR.

Symbol period (s)
The duration of a channel symbol, in seconds. This field appears
only if Mode is set to Eb/No or Es/No.

Variance
The variance of the white Gaussian noise. This field appears only
if Mode is set to Variance from mask.

Examples Many demonstration models and documentation examples use this
block, including:

• “Gray-Coded 8-PSK Demo” (EbNo mode)

• “Phase Noise Effects in 256-QAM - Demo” (EsNo mode)

• “Building a Frequency-Shift Keying Model” (EsNo mode)

• “Example: Using Raised Cosine Filters” (SNR mode)

• “Discrete Multitone Signaling Demo” (Variance from mask mode)

See Also Random Source (Signal Processing Blockset)

Reference [1] Proakis, John G., Digital Communications, 4th Ed., McGraw-Hill,
2001.
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Barker Code Generator

Purpose Generate Barker Code

Library Sequence Generators sublibrary of Comm Sources

Description Barker codes, which are subsets of PN sequences, are commonly used
for frame synchronization in digital communication systems. Barker
codes have length at most 13 and have low correlation sidelobes. A
correlation sidelobe is the correlation of a codeword with a time-shifted
version of itself. The correlation sidelobe, Ck, for a k-symbol shift of an
N-bit code sequence, {Xj}, is given by

C X Xk j j k
j

N k
= +

=

−

∑
1

where Xj is an individual code symbol taking values +1 or -1 for
j=1, 2, 3,..., N, and the adjacent symbols are assumed to be zero.

The Barker Code Generator block provides the codes listed in the
following table:

Code
length Barker Code

1 [-1]

2 [-1 1];

3 [-1 -1 1]

4 [-1 -1 1 -1]

5 [-1 -1 -1 1 -1]

7 [-1 -1 -1 1 1 -1 1]

11 [-1 -1 -1 1 1 1 -1 1 1 -1 1]

13 [-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1]
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Code length
The length of the Barker code.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

See Also PN Sequence Generator
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Purpose Implement baseband phase-locked loop

Library Components sublibrary of Synchronization

Description The Baseband PLL (phase-locked loop) block is a feedback control
system that automatically adjusts the phase of a locally generated
signal to match the phase of an input signal. Unlike thePhase-Locked
Loop block, this block uses a baseband method and does not depend on
a carrier frequency.

This PLL has these three components:

• An integrator used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the
VCO signal to its input using the VCO input sensitivity parameter.
This parameter, measured in Hertz per volt, is a scale factor that
determines how much the VCO shifts from its quiescent frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO
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This model is nonlinear; for a linearized version, use theLinearized
Baseband PLL block.

Dialog
Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO’s quiescent frequency.

See Also Linearized Baseband PLL, Phase-Locked Loop

References For more information about phase-locked loops, see the works
listed in “Selected Bibliography for Synchronization” in Using the
Communications Blockset.
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BCH Decoder

Purpose Decode BCH code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The BCH Decoder block recovers a binary message vector from a
binary BCH codeword vector. For proper decoding, the first two
parameter values in this block should match the parameters in the
correspondingBCH Encoder block.

The input is the binary codeword vector and the first output is the
corresponding binary message vector. If the BCH code has message
length K and codeword length N, then the input has length N and the
first output has length K. If the input is frame-based, then it must be a
column vector.

N must have the form 2M-1, where M is an integer greater than or
equal to 3. For a given codeword length N, only specific message
lengths K are valid for a BCH code. No known analytic formula
describes the relationship among the codeword length, message length,
and error-correction capability. For a list of some valid values of K
corresponding to values of N up to 511, see the bchenc reference page in
the Communications Toolbox documentation.

To have the block output error information, select Output number of
corrected errors. This causes a second output port to appear. The
second output is the number of errors detected during decoding of the
codeword. A negative integer indicates that the block detected more
errors than it could correct using the coding scheme.

The sample times of all input and output signals are equal.

This block supports double and boolean data types.
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Dialog
Box

N
The codeword length, which is also the vector length of the first
input.

K
The message length, which is also the vector length of the first
output.

Output number of corrected errors
Checking this box causes the block to have an additional output
port, which indicates the number of errors the block detected in
the input codeword.

Pair Block BCH Encoder
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Purpose Create BCH code from binary vector data

Library Block sublibrary of Channel Coding

Description The BCH Encoder block creates a BCH code with message length K and
codeword length N. You specify both N and K directly in the dialog box.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

N must have the form 2M-1, where M is an integer greater than or
equal to 3. For a given codeword length N, only specific message
lengths K are valid for a BCH code. No known analytic formula
describes the relationship among the codeword length, message length,
and error-correction capability. For a list of some valid values of K
corresponding to values of N up to 511, see the bchenc reference page in
the Communications Toolbox documentation.

This block supports double and boolean data types.

Dialog
Box

N
The codeword length, which is also the output vector length.

K
The message length, which is also the input vector length.
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Pair Block BCH Decoder

See Also bchenc (Communications Toolbox)

2-32



Bernoulli Binary Generator

Purpose Generate Bernoulli-distributed random binary numbers

Library Data Sources sublibrary of Comm Sources

Description The Bernoulli Binary Generator block generates random binary
numbers using a Bernoulli distribution. The Bernoulli distribution with
parameter p produces zero with probability p and one with probability
1-p. The Bernoulli distribution has mean value 1-p and variance p(1-p).
The Probability of a zero parameter specifies p, and can be any real
number between zero and one.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed and Probability of a zero
parameters becomes the number of columns in a frame-based output
or the number of elements in a sample-based vector output. Also, the
shape (row or column) of the Initial seed and Probability of a zero
parameters becomes the shape of a sample-based two-dimensional
output signal.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Probability of a zero
The probability with which a zero output occurs.

Initial seed
The initial seed value for the random number generator. The seed
can be either a vector of the same length as the Probability of
a zero parameter, or a scalar.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.
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Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

Output data type
The output type of the block can be specified as a boolean, int8,
uint8, int16, uint16, int32, uint32, single, or double. By
default, the block sets this to double. Single outputs may lead
to different results when compared with double outputs for the
same set of parameters.

See Also Binary Error Pattern Generator, Random Integer Generator, Binary
Symmetric Channel; randint (Communications Toolbox), rand (built-in
MATLAB function)
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Purpose Decode systematic cyclic code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Cyclic Decoder block recovers a message vector from
a codeword vector of a binary systematic cyclic code. For proper
decoding, the parameter values in this block should match those in the
correspondingBinary Cyclic Encoder block.

If the cyclic code has message length K and codeword length N, then N
must have the form 2M-1 for some integer M greater than or equal to 3.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

You can determine the systematic cyclic coding scheme in one of two
ways:

• To create an [N,K] code, enter N and K as the first and second
dialog parameters, respectively. The block computes an appropriate
generator polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular
degree-(N-K) binary generator polynomial, enter N as the first
parameter and a binary vector as the second parameter. The vector
represents the generator polynomial by listing its coefficients in order
of ascending exponents. You can create cyclic generator polynomials
using the cyclpoly function in the Communications Toolbox.

This block supports double and boolean data types.
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Dialog
Box

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or generator polynomial
Either the message length, which is also the output vector length;
or a binary vector that represents the generator polynomial for
the code.

Pair Block Binary Cyclic Encoder

See Also cyclpoly (Communications Toolbox)
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Purpose Create systematic cyclic code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Cyclic Encoder block creates a systematic cyclic code with
message length K and codeword length N. The number N must have the
form 2M-1, where M is an integer greater than or equal to 3.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

You can determine the systematic cyclic coding scheme in one of two
ways:

• To create an [N,K] code, enter N and K as the first and second
dialog parameters, respectively. The block computes an appropriate
generator polynomial, namely, cyclpoly(N,K,'min').

• To create a code with codeword length N and a particular
degree-(N-K) binary generator polynomial, enter N as the first
parameter and a binary vector as the second parameter. The vector
represents the generator polynomial by listing its coefficients in order
of ascending exponents. You can create cyclic generator polynomials
using the cyclpoly function in the Communications Toolbox.

This block supports double and boolean data types.
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Dialog
Box

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or generator polynomial
Either the message length, which is also the input vector length;
or a binary vector that represents the generator polynomial for
the code.

Pair Block Binary Cyclic Decoder

See Also cyclpoly (Communications Toolbox)
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Binary Error Pattern Generator

Purpose Generate binary vector while controlling number of 1s

Library Noise Generators sublibrary of Comm Sources

Description The Binary Error Pattern Generator block outputs a random binary
vector whose length is the Block length parameter. The Probabilities
parameter helps determine how many 1s appear in each output vector.
Once the number of 1s is determined, their placement is determined
according to a uniform distribution.

If p1, p2,...pm are the entries in the Probabilities parameter, then p1
is the probability that the output vector will have a single 1, p2 is the
probability that the output vector will have exactly two 1s, and so on.
Note that Probabilities must have sum less than or equal to one, and
length less than or equal to Block length. Also, the probability of a
zero vector is one minus the sum of Probabilities.

This block is useful in testing error-control coding algorithms.

Initial Seed

The scalar Initial seed parameter initializes the random number
generator that the block uses to generate randiom errors. For best
results, the Initial seed should be a prime number greater than 30.
Also, if there are other blocks in a model that have an Initial seed
parameter, you should choose different initial seeds for all such blocks.

You can choose seeds for this block using the Communications
Blockset’srandseed function. At the MATLAB prompt, enter

randseed

This returns a random prime number greater than 30. Entering
randseed again produces a different prime number. If you supply an
integer argument, randseed always returns the same prime for that
integer. For example, randseed(5) always returns the same answer.
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Attributes of Output Signal

The output signal can be a frame-based or column vector, a
sample-based column vector, or a sample-based one-dimensional array.
These attributes are controlled by the Frame-based outputs, Blocks
per frame, and Interpret vector parameters as 1-D parameters.
A frame-based output is a column vector whose size is the product of
Block length and Blocks per frame. A sample-based output is a
vector of length Block length.

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Block length
The length of each error pattern.
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Probabilities
A vector whose kth entry indicates the probability that the error
pattern has exactly k 1s.

Initial seed
The initial seed value for the random number generator. This
must be a scalar.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.

Blocks per frame
The number of error patterns in each column of a frame-based
output signal. This field is active only if Frame-based outputs
is checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

See Also Bernoulli Binary Generator; randerr (Communications Toolbox)
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Purpose Create Reed-Solomon code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary-Input RS Encoder block creates a Reed-Solomon code with
message length K and codeword length N. You specify both N and K
directly in the dialog box. The symbols for the code are binary sequences
of length M, corresponding to elements of the Galois field GF(2M), where
the first bit in each sequence is the most significant bit. Restrictions on
M and N are given in “Restrictions on the M and the Codeword Length
N” on page 2-44 below. The difference N-K must be an even integer.

The input and output are binary-valued signals that represent messages
and codewords, respectively. The input must be a frame-based column
vector whose length is an integer multiple of M*K. The block can accept
the data types int8, uint8, int16, uint16, int32, uint32, single, and
double. The output is a frame-based column vector whose length is the
same integer multiple of M*N, and whose data type is inherited from
the input. For more information on representing data for Reed-Solomon
codes, see the section “Integer Format (Reed-Solomon Only)” in Using
the Communications Blockset.

The default value of M is the smallest integer that is greater than or
equal to log2(N+1), that is, ceil(log2(N+1)). You can change the value
of M from the default by specifying the primitive polynomial for GF(2M),
as described in “Specifying the Primitive Polynomial” on page 2-44
below. If N is less than 2M-1, the block uses a shortened Reed-Solomon
code.

Each M*K input bits represent K integers between 0 and 2M-1.
Similarly, each M*N output bits represent N integers between 0 and
2M-1. These integers in turn represent elements of the Galois field
GF(2M).

An (N,K) Reed-Solomon code can correct up to floor((N-K)/2) symbol
errors (not bit errors) in each codeword.
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Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite
field GF(2M), corresponding to the integers that form messages and
codewords. To do so, first select Specify primitive polynomial. Then,
set Primitive polynomial to a binary row vector that represents a
primitive polynomial over GF(2) of degree M, in descending order of
powers. For example, to specify the polynomial x3+x+1, enter the vector
[1 0 1 1].

If you do not select Specify primitive polynomial, the
block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on the M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the
codeword length N are as follows:

• If you do not select Specify primitive polynomial, N must lie in
the range 3 < N < 216–1.

• If you do select Specify primitive polynomial, N must lie in the
range 3 ≤ N < 216–1 and M must lie in the range 3 ≤ M ≤ 16.

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code.
To do so, first select Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose
entries are between 0 and 2M-1. The vector represents a polynomial,
in descending order of powers, whose coefficients are elements of
GF(2M) represented in integer format. See the section“Integer Format
(Reed-Solomon Only)” for more information about integer format. The
generator polynomial must be equal to a polynomial with a factored form

g(x) = (x+Ab)(x+Ab+1)(x+Ab+2)...(x+Ab+N-K-1)
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where A is the primitive element of the Galois field over which the input
message is defined, and b is a non-negative integer.

If you do not select Specify generator polynomial, the block uses the
default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by entering
rsgenpoly(N1,K1), where N1=2^M-1 and K1=K+(N1-N), at the MATLAB
prompt, if you are using the default primitive polynomial. If the
Specify primitive polynomial box is selected, and you specify the
primitive polynomial specified as poly, the default generator polynomial
is rsgenpoly(N1,K1,poly).

Examples Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a binary
vector of length 15 that represents 5 three-bit integers. A corresponding
codeword is a binary vector of length 21 that represents 7 three-bit
integers. The following figure shows the codeword that would result
from a particular message word. The integer format equivalents
illustrate that the highest order bit is at the left.
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Dialog
Box

Codeword length N
The codeword length. The output has vector length M*N.

Message length K
The message length. The input has vector length M*K.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.
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Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Pair Block Binary-Output RS Decoder

See Also Integer-Input RS Encoder
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Binary Linear Decoder

Purpose Decode linear block code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Linear Decoder block recovers a binary message vector from
a binary codeword vector of a linear block code.

The Generator matrix parameter is the generator matrix for the block
code. For proper decoding, this should match the Generator matrix
parameter in the correspondingBinary Linear Encoder block. If N is the
codeword length of the code, then Generator matrix must have N
columns. If K is the message length of the code, then the Generator
matrix parameter must have K rows.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

The decoder tries to correct errors, using the Decoding table
parameter. If Decoding table is the scalar 0, then the block defaults to
the table produced by the Communications Toolbox function syndtable.
Otherwise, Decoding table must be a 2N-K-by-N binary matrix. The rth
row of this matrix is the correction vector for a received binary codeword
whose syndrome has decimal integer value r-1. The syndrome of a
received codeword is its product with the transpose of the parity-check
matrix.

This block supports double and boolean data types.
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Dialog
Box

Generator matrix
Generator matrix for the code; same as in Binary Linear Encoder
block.

Decoding table
Either a 2N-K-by-N matrix that lists correction vectors for each
codeword’s syndrome; or the scalar 0, in which case the block
defaults to the table corresponding to the Generator matrix
parameter.

Pair Block Binary Linear Encoder
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Purpose Create linear block code from binary vector data

Library Block sublibrary of Channel Coding

Description The Binary Linear Encoder block creates a binary linear block code
using a generator matrix that you specify. If K is the message length of
the code, then the Generator matrix parameter must have K rows.
If N is the codeword length of the code, then Generator matrix must
have N columns.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

This block supports double and boolean data types.

Dialog
Box

Generator matrix
A K-by-N matrix, where K is the message length and N is the
codeword length.

Pair Block Binary Linear Decoder
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Purpose Decode Reed-Solomon code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Binary-Output RS Decoder block recovers a binary message
vector from a binary Reed-Solomon codeword vector. For proper
decoding, the parameter values in this block should match those in the
correspondingBinary-Input RS Encoder block.

The Reed-Solomon code has message length K and codeword length N.
You specify both N and K directly in the dialog box. The symbols for the
code are binary sequences of length M, corresponding to elements of the
Galois field GF(2M), where the first bit in each sequence is the most
significant bit. Restrictions on M and N are described in “Restrictions
on the M and the Codeword Length N” on page 2-44. The difference N-K
must be an even integer.

The input and output are binary-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of M*K. The block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of M*N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see “Integer Format (Reed-Solomon Only)” in
Using the Communications Blockset.

The default value of M is ceil(log2(N+1)), that is, the smallest integer
greater than or equal to log2(N+1). You can change the value of M
from the default by specifying the primitive polynomial for GF(2M), as
described in “Specifying the Primitive Polynomial” on page 2-44 below.
If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon
code, as described in “Specifying the Generator Polynomial” on page
2-44.

Each M*K input bits represent K integers between 0 and 2M-1.
Similarly, each M*N output bits represent N integers between 0 and
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2M-1. These integers in turn represent elements of the Galois field
GF(2M).

The second output is a vector of the number of errors detected during
decoding of the codeword. A -1 indicates that the block detected
more errors than it could correct using the coding scheme. An (N,K)
Reed-Solomon code can correct up to floor((N-K)/2) symbol errors
(not bit errors) in each codeword. The data type of this output is also
inherited from the input signal.

You can disable the second output by deselecting Output port for
number of corrected errors. This removes the block’s second output
port.

2-52



Binary-Output RS Decoder

Dialog
Box

Codeword length N
The codeword length. The input has vector length M*N.

Message length K
The message length. The first output has vector length M*K.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.
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Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output number of corrected errors
When you select this box, the block outputs the number of
corrected errors in each word through a second output port.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Algorithm This block uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the references listed below.

Pair Block Binary-Input RS Encoder

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.

See Also Integer-Output RS Decoder
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Binary Symmetric Channel

Purpose Introduce binary errors

Library Channels

Description The Binary Symmetric Channel block introduces binary errors to the
signal transmitted through this channel.

The input port is the transmitted binary signal. The input can be either
a scalar, a sample-based vector, or a frame-based row vector. This block
processes each vector element independently, and introduces an error in
a given spot with probability Error probability.

The first output port is the binary signal that has passed through
the channel. The second output port is the vector of errors that were
introduced. To suppress the second output port, clear the Output
error vector check box.

Dialog
Box

Error probability
The probability that a binary error will occur. The value of this
parameter must be between zero and one.

Initial seed
The initial seed value for the random number generator.
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Output error vector
If this box is checked, then the block outputs the vector of errors.

Output datatype
You can set the output data type to double or boolean.

See Also Bernoulli Binary Generator
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Bipolar to Unipolar Converter

Purpose Map bipolar signal into unipolar signal in range [0, M-1]

Library Utility Blocks

Description The Bipolar to Unipolar Converter block maps the bipolar input signal
to a unipolar output signal. If the input consists of integers in the set
{-M+1, -M+3, -M+5,..., M-1}, where M is the M-ary number parameter,
then the output consists of integers between 0 and M-1.

The table below shows how the block’s mapping depends on the
Polarity parameter.

Polarity Parameter Value
Output Corresponding to
Input Value of k

Positive (M-1+k)/2

Negative (M-1-k)/2

Dialog
Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive (respectively, Negative) causes the block to
maintain (respectively, reverse) the relative ordering of symbols
in the alphabets.
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Examples If the input is [-3; -1; 1; 3], the M-ary number parameter is 4, and
the Polarity parameter is Positive, then the output is [0; 1; 2; 3].
Changing the Polarity parameter to Negative changes the output to
[3; 2; 1; 0].

Pair Block Unipolar to Bipolar Converter
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Bit to Integer Converter

Purpose Map vector of bits to corresponding vector of integers

Library Utility Blocks

Description The Bit to Integer Converter block maps groups of bits in the input
vector to integers in the output vector. If M is the Number of bits
per integer parameter, then the block maps each group of M bits to
an integer between 0 and 2M-1. As a result, the output vector length is
1/M times the input vector length.

If the input is sample-based input, then it must be a vector whose
length equals the Number of bits per integer parameter. If the input
is frame-based, then it must be a column vector whose length is an
integer multiple of Number of bits per integer.

The block interprets the first bit in each group as the most significant
bit.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, and double.

Dialog
Box

Number of bits per integer
The number of input bits that the block maps to each integer of
the output. This parameter must be an integer between 1 and 31.
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Output data type
The output data type can be set to int8, uint8, int16, uint16,
int32, uint32, single, or double. The output can be of type
boolean only if M is 2 and this field is set to Same as input.

Examples If the input is [0; 1; 1; 1; 1; 1; 0; 1] and the Number of bits per integer
parameter is 4, then the output is [7; 13]. The block maps the first group
of four bits (0, 1, 1, 1) to 7 and the second group of four bits (1, 1, 0, 1) to
13. Notice that the output length is one-fourth of the output length.

Pair Block Integer to Bit Converter
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BPSK Demodulator Baseband

Purpose Demodulate BPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The BPSK Demodulator Baseband block demodulates a signal that was
modulated using the binary phase shift keying method. The input is
a baseband representation of the modulated signal. The input can be
either a scalar or a frame-based column vector. The block can accept
the data types single and double.

The input must be a discrete-time complex signal. The block maps
the points exp(jθ) and -exp(jθ) to 0 and 1, respectively, where θ is the
Phase offset parameter.

Dialog
Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block BPSK Modulator Baseband

See Also M-PSK Demodulator Baseband, QPSK Demodulator Baseband, DBPSK
Demodulator Baseband
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Purpose Modulate using binary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The BPSK Modulator Baseband block modulates using the binary phase
shift keying method. The output is a baseband representation of the
modulated signal. For both integer and bit inputs, this block can accept
the data types int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

The input must be a discrete-time binary-valued signal. If the input bit
is 0 or 1, respectively, then the modulated symbol is exp(jθ) or -exp(jθ)
respectively, where θ is the Phase offset parameter.

Dialog
Box

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The block can output the data types single and double.

Pair Block BPSK Demodulator Baseband

See Also M-PSK Modulator Baseband, QPSK Modulator Baseband, DBPSK
Modulator Baseband
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Charge Pump PLL

Purpose Implement charge pump phase-locked loop using digital phase detector

Library Components sublibrary of Synchronization

Description The Charge Pump PLL (phase-locked loop) block automatically adjusts
the phase of a locally generated signal to match the phase of an input
signal. It is suitable for use with digital signals.

This PLL has these three components:

• A sequential logic phase detector, also called a digital phase detector
or a phase/frequency detector.

• A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics
of the VCO using the VCO input sensitivity, VCO quiescent
frequency, VCO initial phase, and VCO output amplitude
parameters.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO

2-63



Charge Pump PLL

A sequential logic phase detector operates on the zero crossings of
the signal waveform. The equilibrium point of the phase difference
between the input signal and the VCO signal equals π. The sequential
logic detector can compensate for any frequency difference that might
exist between a VCO and an incoming signal frequency. Hence, the
sequential logic phase detector acts as a frequency detector.

Dialog
Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.
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VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO quiescent frequency value. The units of
VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is
zero. This should match the frequency of the input signal.

VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

See Also Phase-Locked Loop

References For more information about digital phase-locked loops, see the works
listed in“Selected Bibliography for Synchronization” in Using the
Communications Blockset.
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Purpose Equalize using constant modulus algorithm

Library Equalizers

Description The CMA Equalizer block uses a linear equalizer and the constant
modulus algorithm (CMA) to equalize a linearly modulated baseband
signal through a dispersive channel. During the simulation, the block
uses the CMA to update the weights, once per symbol. If the Number
of samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

When using this block, you should initialize the equalizer weights with
a nonzero vector. Typically, CMA is used with differential modulation;
otherwise, the initial weights are very important. A typical vector
of initial weights has a 1 corresponding to the center tap and zeros
elsewhere.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as a
scalar or a frame-based column vector. The port labeled Equalized
outputs the result of the equalization process.

You can configure the block to have one or more of the extra ports listed
in the table below.
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Port Meaning How to Enable

Err output y(R -|y|2), where y is
the equalized signal
and R is a constant
related to the signal
constellation

Check the Output
error check box.

Wts output A vector listing the
weights after the
block has processed
either the current
input frame or, in
sample-based mode,
the current input
sample.

Check the Output
weights check box.

Equalizer Delay

The delay between the transmitter’s modulator output and the CMA
equalizer output is typically unknown (unlike the delay for other
adaptive equalizers in this blockset). If you need to determine the delay,
you can use the Find Delay block.
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Dialog
Box

Number of taps
The number of taps in the filter of the equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Step size
The step size of the CMA.
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Leakage factor
The leakage factor of the CMA, a number between 0 and 1. A
value of 1 corresponds to a conventional weight update algorithm,
and a value of 0 corresponds to a memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Output error
If you check this box, the block outputs the error signal described
in the table above.

Output weights
If you check this box, the block outputs the current weights.

References [1] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[2] Johnson, Richard C. Jr., Philip Schniter, Thomas. J. Endres, et al.,
"Blind Equalization Using the Constant Modulus Criterion: A Review,"
Proceedings of the IEEE, vol. 86, pp. 1927-1950, October 1998.

See Also LMS Linear Equalizer, LMS Decision Feedback Equalizer, RLS Linear
Equalizer, RLS Decision Feedback Equalizer
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Complex Phase Difference

Purpose Output phase difference between two complex input signals

Library Utility Blocks

Description The Complex Phase Difference block accepts two complex input signals
that have the same size and frame status. The output is the phase
difference from the second to the first, measured in radians. The
elements of the output are between -π and π.

The input signals can have any size or frame status. This block
processes each pair of elements independently.

Dialog
Box

See Also Complex Phase Shift
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Purpose Shift phase of complex input signal by second input value

Library Utility Blocks

Description The Complex Phase Shift block accepts a complex signal at the port
labeled In. The output is the result of shifting this signal’s phase by an
amount specified by the real signal at the input port labeled Ph. The Ph
input is measured in radians, and must have the same size and frame
status as the In input.

The input signals can have any size or frame status. This block
processes each pair of corresponding elements independently.

Dialog
Box

See Also Complex Phase Difference
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Continuous-Time VCO

Purpose Implement voltage-controlled oscillator

Library Components sublibrary of Synchronization

Description The Continuous-Time VCO (voltage-controlled oscillator) block
generates a signal whose frequency shift from the Quiescent
frequency parameter is proportional to the input signal. The input
signal is interpreted as a voltage. If the input signal is u(t), then the
output signal is

y t A f t k u dc c c
t

( ) cos ( )= + +⎛
⎝⎜

⎞
⎠⎟∫2 2

0
π π τ τ ϕ

where Ac is the Output amplitude parameter, fc is the Quiescent
frequency parameter, kc is the Input sensitivity parameter, and φ
is the Initial phase parameter.

This block uses a continuous-time integrator to interpret the equation
above.

The input and output signals are both sample-based scalars.

Dialog
Box
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Output amplitude
The amplitude of the output.

Quiescent frequency
The frequency of the oscillator output when the input signal is
zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift
from the Quiescent frequency value. The units of Input
sensitivity are Hertz per volt.

Initial phase
The initial phase of the oscillator in radians.

See Also Discrete-Time VCO
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Convolutional Deinterleaver

Purpose Restore ordering of symbols that were permuted using shift registers

Library Convolutional sublibrary of Interleaving

Description The Convolutional Deinterleaver block recovers a signal that was
interleaved using theConvolutional Interleaver block. The parameters
in the two blocks should have the same values.

The input can be either a scalar or a frame-based column vector. It can
be real or complex. The sample times of the input and output signals
are the same.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The difference in symbol capacity of each successive shift register,
where the last register holds zero symbols.
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Initial conditions
The values that fill each shift register when the simulation begins.

Examples For an example that uses this block, see “Example: Convolutional
Interleavers”.

Pair Block Convolutional Interleaver

See Also General Multiplexed Deinterleaver, Helical Deinterleaver

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty
Channel." IEEE Transactions on Communications, vol. COM-19,
October 1971. 772-781.

[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE
Transactions on Information Theory, IT-16 (3), May 1970. 338-345.
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Purpose Create convolutional code from binary data

Library Convolutional sublibrary of Channel Coding

Description The Convolutional Encoder block encodes a sequence of binary input
vectors to produce a sequence of binary output vectors. This block can
process multiple symbols at a time.

Input and Output Sizes

If the encoder takes k input bit streams (that is, can receive 2k possible
input symbols), then this block’s input vector length is L*k for some
positive integer L. Similarly, if the encoder produces n output bit
streams (that is, can produce 2n possible output symbols), then this
block’s output vector length is L*n.

The input can be a sample-based vector with L = 1, or a frame-based
column vector with any positive integer for L.

For both its inputs and outputs for the data ports, the block supports
double, single, boolean, int8, uint8, int16, uint16, int32, and
uint32. The port data types are inherited from the signals that drive
the block. The input reset port supports double and boolean typed
signals.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in “Trellis Description of a Convolutional Encoder” in the
Communications Toolbox documentation. You can use this parameter
field in two ways:

• If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is preferable because it causes Simulink to
spend less time updating the diagram at the beginning of each
simulation, compared to the usage in the next bulleted item.
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• If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to

poly2trellis(7,[171 133],171)

The encoder registers begin in the all-zeros state. You can configure
the encoder so that it resets its registers to the all-zeros state during
the course of the simulation. To do this, use one of these values of the
Reset parameter:

• The value None indicates that the encoder never resets.

• The value On each frame indicates that the encoder resets at the
beginning of each frame, before processing the next frame of input
data

• The value On nonzero Rst input causes the block to have a second
input port, labeled Rst. The signal at the Rst port is a scalar signal.
When it is nonzero, the encoder resets before processing the data at
the first input port.
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Reset
Determines whether and under what circumstances the encoder
resets to the all-zeros state before processing the input data.
Choices are None, On each frame, and On nonzero Rst input.
The last option causes the block to have a second input port,
labeled Rst.

See Also Viterbi Decoder, APP Decoder

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein.
Data Communications Principles. New York: Plenum, 1992.

2-78



Convolutional Interleaver

Purpose Permute input symbols using set of shift registers

Library Convolutional sublibrary of Interleaving

Description The Convolutional Interleaver block permutes the symbols in the
input signal. Internally, it uses a set of shift registers. The delay
value of the kth shift register is (k-1) times the Register length step
parameter. The number of shift registers is the value of the Rows of
shift registers parameter.

The Initial conditions parameter indicates the values that fill each
shift register at the beginning of the simulation (except for the first shift
register, which has zero delay). If Initial conditions is a scalar, then
its value fills all shift registers except the first; if Initial conditions
is a column vector whose length is the Rows of shift registers
parameter, then each entry fills the corresponding shift register. The
value of the first element of the Initial conditions parameter is
unimportant, since the first shift register has zero delay.

The input can be either a scalar or a frame-based column vector. It can
be real or complex. The sample times of the input and output signals
are the same.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.
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Dialog
Box

Rows of shift registers
The number of shift registers that the block uses internally.

Register length step
The number of additional symbols that fit in each successive shift
register, where the first register holds zero symbols.

Initial conditions
The values that fill each shift register when the simulation begins.

Examples For an example that uses this block, see “Example: Convolutional
Interleavers”.

Pair Block Convolutional Deinterleaver

See Also General Multiplexed Interleaver, Helical Interleaver

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Forney, G., D., Jr. "Burst-Correcting Codes for the Classic Bursty
Channel." IEEE Transactions on Communications, vol. COM-19,
October 1971. 772-781.
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[3] Ramsey, J. L. "Realization of Optimum Interleavers." IEEE
Transactions on Information Theory, IT-16 (3), May 1970. 338-345.
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CPFSK Demodulator Baseband

Purpose Demodulate CPFSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPFSK Demodulator Baseband block demodulates a signal that
was modulated using the continuous phase frequency shift keying
method. The input is a baseband representation of the modulated
signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2K for some positive integer K.

The Modulation index parameter times π radians is the phase shift
in the modulated signal due to the latest symbol, when that symbol is
the integer 1. The Phase offset parameter is the initial phase of the
modulated waveform.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1
zero symbols.

• If the input signal is frame-based, then the delay consists of D zero
symbols.

Outputs and Symbol Sets

If the Output type parameter is set to Integer, then the block
produces odd integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces
groupings of K bits. Each grouping is called a binary word.

In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps
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the odd integer k to the nonnegative integer (k+M-1)/2. Finally, the
block maps each nonnegative integer to a binary word, using a mapping
that depends on whether the Symbol set ordering parameter is
set to Binary or Gray. For more information about Gray and binary
coding, see “Binary-Valued and Integer-Valued Signals” in Using the
Communications Blockset.

The input can be either a scalar or a frame-based column vector and
must be of type single or double.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups
of bits.

Symbol set ordering
Determines how the block maps each integer to a group of output
bits. This field is active only when Output type is set to Bit.
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Modulation index
The number of half-revolutions of phase shift in the modulated
signal after modulating the latest symbol of 1.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or
double.

Pair Block CPFSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder, M-FSK Demodulator
Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.
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Purpose Modulate using continuous phase frequency shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPFSK Modulator Baseband block modulates using the continuous
phase frequency shift keying method. The output is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the size of the input alphabet. M must have the form 2K for some
positive integer K.

The Modulation index parameter times π radians is the phase shift
due to the latest symbol when that symbol is the integer 1. The Phase
offset parameter is the initial phase of the output waveform, measured
in radians.

For the exact definitions of the rectangular pulse shape that this block
uses, see the work by Anderson, Aulin, and Sundberg among the
references listed below.

Inputs and Symbol Sets

If the Input type parameter is set to Integer, then the block accepts
odd integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts
groupings of K bits. Each grouping is called a binary word. The input
vector length must be an integer multiple of K.

In binary input mode, the block maps each binary word to an integer
between 0 and M-1, using a mapping that depends on whether the
Symbol set ordering parameter is set to Binary or Gray. The block
then maps the integer k to the intermediate value 2k-(M-1) and proceeds
as in the integer input mode. For more information, see “Binary-Valued
and Integer-Valued Signals” in Using the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If
Input type is Bit, then the input can also be a vector of length K.
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Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

Dialog
Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.
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Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest
symbol when that symbol is the integer 1.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or binary word in the input.

Output datatype
The output data type can be single or double.

Pair Block CPFSK Demodulator Baseband

See Also CPM Modulator Baseband, M-FSK Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.
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Purpose Demodulate CPM-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPM Demodulator Baseband block demodulates a signal that was
modulated using continuous phase modulation. The input is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the size of the input alphabet. M must have the form 2K for some
positive integer K.

The input can be either a scalar or a frame-based column vector and
must be of type single or double.

The Modulation index, Frequency pulse shape, Rolloff, BT
product, Pulse length, Symbol prehistory, and Phase offset
parameters are as described on the reference page for theCPM
Modulator Baseband block.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1
zero symbols.

• If the input signal is frame-based, then the delay consists of D zero
symbols.

Outputs and Symbol Sets

If the Output type parameter is set to Integer, then the block
produces odd integers between -(M-1) and M-1.

If the Output type parameter is set to Bit, then the block produces
groupings of K bits. Each grouping is called a binary word.
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In binary output mode, the block first maps each input symbol to an
intermediate value as in the integer output mode. The block then maps
the odd integer k to the nonnegative integer (k+M-1)/2. Finally, the
block maps each nonnegative integer to a binary word, using a mapping
that depends on whether the Symbol set ordering parameter is
set to Binary or Gray. For more information about Gray and binary
coding, see “Binary-Valued and Integer-Valued Signals” in Using the
Communications Blockset.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

M-ary number
The size of the alphabet.

Output type
Determines whether the output consists of integers or groups
of bits.

2-91



CPM Demodulator Baseband

Symbol set ordering
Determines how the block maps each integer to a group of output
bits. This field is active only when Output type is set to Bit.

Modulation index
The number of half-revolutions of phase shift in the modulated
signal after modulating the latest symbol of 1.

Frequency pulse shape
The type of pulse shaping that the corresponding modulator uses
to smooth the phase transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral
raised cosine pulse. This field is active only when Frequency
pulse shape is set to Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears
only when Frequency pulse shape is set to Spectral Raised
Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used by the modulator before the start of the
simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.
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Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output datatype
The output data type can be boolean, int8, int16, int32, or
double.

Pair Block CPM Modulator Baseband

See Also CPFSK Demodulator Baseband, GMSK Demodulator Baseband, MSK
Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.
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Purpose Modulate using continuous phase modulation

Library CPM, in Digital Baseband sublibrary of Modulation

Description The CPM Modulator Baseband block modulates using continuous phase
modulation. The output is a baseband representation of the modulated
signal. The M-ary number parameter, M, is the size of the input
alphabet. M must have the form 2K for some positive integer K.

Continuous phase modulation uses pulse shaping to smooth the phase
transitions of the modulated signal. Using the Frequency pulse
shape parameter, you can choose these types of pulse shapes:

• Rectangular

• Raised Cosine

• Spectral Raised Cosine

This option requires an additional parameter, Rolloff. The Rolloff
parameter, which affects the spectrum of the pulse, is a scalar
between zero and one.

• Gaussian

This option requires an additional parameter, BT product. The BT
product parameter, which represents bandwidth multiplied by time,
is a nonnegative scalar. It is used to reduce the bandwidth at the
expense of increased intersymbol interference.

• Tamed FM (tamed frequency modulation)

For the exact definitions of these pulse shapes, see the work by
Anderson, Aulin, and Sundberg among the references listed below.
Each pulse shape has a correponding pulse duration. The Pulse length
parameter measures this quantity in symbol intervals.

The Modulation index parameter times π radians is the phase shift
due to the latest symbol when that symbol is the integer 1. The Phase
offset parameter is the initial phase of the output waveform, measured
in radians.
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The Symbol prehistory parameter is a scalar or vector that specifies
the data symbols used before the start of the simulation, in reverse
chronological order. If it is a vector, then its length must be one less
than the Pulse length parameter.

Inputs and Symbol Sets

If the Input type parameter is set to Integer, then the block accepts
odd integers between -(M-1) and M-1.

If the Input type parameter is set to Bit, then the block accepts
groupings of K bits. Each grouping is called a binary word. The input
vector length must be an integer multiple of K.

In binary input mode, the block maps each binary word to an integer
between 0 and M-1, using a mapping that depends on whether the
Symbol set ordering parameter is set to Binary or Gray. The block
then maps the integer k to the intermediate value 2k-(M-1) and proceeds
as in the integer input mode. For more information, see “Binary-Valued
and Integer-Valued Signals” in Using the Communications Blockset.

The input can be either a scalar or a frame-based column vector. If
Input type is Bit, then the input can also be a vector of length K.

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

M-ary number
The size of the alphabet.

Input type
Indicates whether the input consists of integers or groups of bits.
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Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Modulation index
The number of half-revolutions of phase shift due to the latest
symbol when that symbol is the integer 1.

Frequency pulse shape
The type of pulse shaping that the block uses to smooth the phase
transitions of the modulated signal.

Main lobe pulse duration (symbol intervals)
Number of symbol intervals of the largest lobe of the spectral
raised cosine pulse. This field is active only when Frequency
pulse shape is set to Spectral Raised Cosine.

Rolloff
The rolloff factor of the raised cosine filter. This field appears
only when Frequency pulse shape is set to Spectral Raised
Cosine.

BT product
The product of bandwidth and time. This field appears only when
Frequency pulse shape is set to Gaussian.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in
reverse chronological order.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or binary word in the input.
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Output data type
This block supports double and single data types.

Pair Block CPM Demodulator Baseband

See Also CPFSK Modulator Baseband, GMSK Modulator Baseband, MSK
Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.
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Purpose Recover carrier phase using 2P-Power method

Library Carrier Phase Recovery sublibrary of Synchronization

Description The CPM Phase Recovery block recovers the carrier phase of the input
signal using the 2P-Power method. This feedforward, non-data-aided,
clock-aided method is suitable for systems that use these types of
baseband modulation: continuous phase modulation (CPM), minimum
shift keying (MSK), continuous phase frequency shift keying (CPFSK),
and Gaussian minimum shift keying (GMSK). This block is suitable for
use with blocks in the Baseband Continuous Phase Modulation library.

If you express the modulation index for CPM as a proper fraction,
h = K / P, then P is the number to which the name "2P-Power" refers.

The 2P-Power method assumes that the carrier phase is constant over
a series of consecutive symbols, and returns an estimate of the carrier
phase for the series. The Observation interval parameter is the
number of symbols for which the carrier phase is assumed constant.
This number must be an integer multiple of the input signal’s vector
length.

Input and Outputs

The input signal must be a frame-based column vector or a sample-based
scalar of type double or single. The input signal represents a baseband
signal at the symbol rate, so it must be complex-valued and must
contain one sample per symbol.

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input
signal counterclockwise, where the amount of rotation equals the
carrier phase estimate. The Sig output is thus a corrected version
of the input signal, and has the same sample time and vector size
as the input signal.

• The output port labeled Ph outputs the carrier phase estimate, in
degrees, for all symbols in the observation interval. The Ph output is
a scalar signal.
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Note Because the block internally computes the argument of
a complex number, the carrier phase estimate has an inherent
ambiguity. The carrier phase estimate is between -90/P and 90/P
degrees and might differ from the actual carrier phase by an integer
multiple of 180/P degrees.

Delays and Latency

The block’s algorithm requires it to collect symbols during a period of
length Observation interval before computing a single estimate of the
carrier phase. Therefore, each estimate is delayed by Observation
interval symbols and the corrected signal has a latency of Observation
interval symbols, relative to the input signal.

Dialog
Box

P
The denominator of the modulation index for CPM (h = K / P)
when expressed as a proper fraction.

Observation interval
The number of symbols for which the carrier phase is assumed
constant.
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Algorithm If the symbols occurring during the observation interval are x(1), x(2),
x(3),..., x(L), then the resulting carrier phase estimate is
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⎪
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where the arg function returns values between -180 degrees and 180
degrees.

References [1] Mengali, Umberto, and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

See Also M-PSK Phase Recovery, CPM Modulator Baseband
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Purpose Generate CRC bits according to CRC method and append to input data
frames

Library CRC sublibrary of Error Detection and Correction

Description The CRC-N Generator block generates cyclic redundancy code (CRC)
bits for each input data frame and appends them to the frame. The
CRC-N Generator block is a simplified version of the General CRC
Generator block. With the CRC-N Generator block, you can select the
generator polynomial for the CRC algorithm from a list of commonly
used polynomials, given in the CRC-N method field in the block’s
dialog. N is degree of the generator polynomial. The table below lists
the options for the generator polynomial.

CRC Method Generator Polynomial Number of Bits

CRC-32 x32+x26+x23+x22+x16+x12+x11

+x10+x8+x7+x5+x4+x2+x+1
32

CRC-24 x24+x23+x14+x12+x8+1 24

CRC-16 x16+x15+x2+1 16

Reversed
CRC-16

x16+x14+x+1 16

CRC-8 x8+x7+x6+x4+x2+1 8

CRC-4 x4+x3+x2+x+1 4

You specify the initial state of the internal shift register using the
Initial states parameter. You specify the number of checksums that
the block calculates for each input frame using the Checksums per
frame parameter. For more detailed information, see the reference
page for the General CRC Generator block.

This block supports double and boolean data types. The output data
type is inherited from the input.
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Signal Attributes

The General CRC Generator block has one input port and one output
port. Both ports allow frame based binary column vectors only.

Dialog
Box

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the
degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block
calculates for each input frame.

Algorithm For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
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[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block CRC-N Syndrome Detector

See Also General CRC Generator, General CRC Syndrome Detector
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Purpose Detect errors in input data frames according to selected CRC method

Library CRC sublibrary of Error Detection and Correction

Description The CRC-N Syndrome Detector block computes checksums for its
entire input frame. The block’s second output is a vector whose size is
the number of checksums, and whose entries are 0 if the checksum
computation yields a zero value, and 1 otherwise. The block’s first
output is the set of message words with the checksums removed.

The CRC-N Syndrome Detector block is a simplified version of the
General CRC Syndrome Detector block. You can select the generator
polynomial for the CRC algorithm from a list of commonly used
polynomials, given in the CRC-N method field in the block’s dialog. N
is the degree of the generator polynomial. The reference page for the
CRC-N Generator block contains a list of the options for the generator
polynomial.

The parameter settings for the CRC-N Syndrome Detector block should
match those of the CRC-N Generator block.

You specify the initial state of the internal shift register by the Initial
states parameter. You specify the number of checksums that the
block calculates for each input frame by the Checksums per frame
parameter. For more detailed information, see the reference page for
the General CRC Syndrome Detector block.

This block supports double and boolean data types. The output data
type is inherited from the input.

2-105



CRC-N Syndrome Detector

Dialog
Box

CRC-N method
The generator polynomial for the CRC algorithm.

Initial states
A binary scalar or a binary row vector of length equal to the
degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block
calculates for each input frame.

Algorithm For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
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[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block CRC-N Generator

See Also General CRC Generator, General CRC Syndrome Detector
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Purpose Map integer symbols from one coding scheme to another

Library Utility Blocks

Description The Data Mapper block accepts integer inputs and produces integer
outputs. You can select one of four mapping modes: Binary to Gray,
Gray to Binary, User Defined, or Straight Through.

The input can be either a scalar, a sample-based vector, or a frame-based
column vector. The block can accept multichannel inputs and allows for
input and output data types of double, single, int32, int16, int8,
uint32, uint16, and uint8. If the input is double or single, then
it must be non-negative in value. Note that although the block will
provide outputs for non-integer valued inputs, the results will likely
be meaningless.

Gray coding is an ordering of binary numbers such that all adjacent
numbers differ by only one bit. However, the inputs and outputs of this
block are integers, not binary vectors. As a result, the first two mapping
modes perform code conversions as follows:

• In the Binary to Gray mode, the output from this block is the
integer equivalent of the Gray code bit representation for the input
integer.

• In the Gray to Binary mode, the output from this block is the
integer position of the binary equivalent of the input integer in a
Gray code ordering.

As an example, the table below shows both the Binary to Gray and
Gray to Binary mappings for integers in the range 0 to 7. In the
Binary to Gray Mode Output column, notice that binary representations
in successive rows differ by exactly one bit. In the Gray to Binary Mode
columns, notice that sorting the rows by Output value creates a Gray
code ordering of Input binary representations.
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Binary to Gray Mode Gray to Binary Mode

Input Output Input Output

0 0 (000) 0 (000) 0

1 1 (001) 1 (001) 1

2 3 (011) 2 (010) 3

3 2 (010) 3 (011) 2

4 6 (110) 4 (100) 7

5 7 (111) 5 (101) 6

6 5 (101) 6 (110) 4

7 4 (100) 7 (111) 5

When you select the User Defined mode, you can use any arbitrary
mapping by providing a vector to specify the output ordering. For
example, the vector [1,5,0,4,2,3] defines the following mapping:

0 1
1 5
2 0
3 4
4 2
5 3

→
→
→
→
→
→

When you select the Straight Through mode, the output equals the
input.
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Dialog
Box

Mapping mode
The type of data mapping that the block performs.

Symbol set size
Symbol set size of M restricts this block’s inputs and outputs to
integers in the range 0 to M-1.

Mapping vector
A vector of length M that contains the integers from 0 to M-1.
The order of the elements of this vector specifies the mapping of
inputs to outputs. This field is active only when Mapping mode
is set to User Defined.
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DBPSK Demodulator Baseband

Purpose Demodulate DBPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The DBPSK Demodulator Baseband block demodulates a signal that
was modulated using the differential binary phase shift keying method.
The input is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The block compares
the current symbol to the previous symbol. It maps phase differences of
θ and π+θ, respectively, to outputs of 0 and 1, respectively, where θ is
the Phase rotation parameter. The first element of the block’s output
is the initial condition of zero because there is no previous symbol with
which to compare the first symbol.

The input can be either a scalar or a frame-based column vector. The
block accepts input of data types single and double.

Dialog
Box

Phase rotation (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Output data type
For both integer and bit inputs, this block can output the data
types int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.
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Pair Block DBPSK Modulator Baseband

See Also M-DPSK Demodulator Baseband, DQPSK Demodulator Baseband,
BPSK Demodulator Baseband
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Purpose Modulate using differential binary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The DBPSK Modulator Baseband block modulates using the differential
binary phase shift keying method. The output is a baseband
representation of the modulated signal.

The input must be a discrete-time binary-valued signal. The input can
be either a scalar or a frame-based column vector. For both integer
and bit inputs, the block can accept the data types int8, uint8, int16,
uint16, int32, uint32, boolean, single, and double. These rules
govern this modulation method when the Phase rotation parameter
is θ:

• If the first input bit is 0 or 1, respectively, then the first modulated
symbol is exp(jθ) or -exp(jθ), respectively.

• If a successive input bit is 0 or 1, respectively, then the modulated
symbol is the previous modulated symbol multiplied by exp(jθ) or
-exp(jθ), respectively.

Dialog
Box

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.
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Output Data type
The output data type can be either single or double. By default,
the block sets this to double.

Pair Block DBPSK Demodulator Baseband

See Also DQPSK Modulator Baseband, BPSK Modulator Baseband

2-114



Deinterlacer

Purpose Distribute elements of input vector alternately between two output
vectors

Library Sequence Operations

Description The Deinterlacer block accepts an input vector that has an even number
of elements. The block alternately places the elements in each of two
output vectors. As a result, each output vector size is half the input
vector size. The output vectors have the same complexity and sample
time of the input.

The input can be either a sample-based vector of length two, or a
frame-based column vector whose length is any even integer. The block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
boolean, single, double, and fixed-point. The data types of this output
will be the same as that of the input signal.

This block can be useful for separating in-phase and quadrature
information from a single vector into separate vectors.

Dialog
Box

Examples If the input vector is frame-based with value [1; 5; 2; 6; 3; 7; 4; 8], then
the two output vectors are [1; 2; 3; 4] and [5; 6; 7; 8]. Notice that this is
the inverse of the example on the reference page for the Interlacer block.

If the input vector is frame-based with value [1; 2; 3; 4; 5; 6], then the
two output vectors are [1; 3; 5] and [2; 4; 6].

Pair Block Interlacer
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See Also Demux (Simulink)
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Purpose Reduce sampling rate by averaging consecutive samples

Library Sequence Operations

Description The Derepeat block resamples the discrete input at a rate 1/N times the
input sample rate by averaging N consecutive samples. This is one
possible inverse of the Repeat block (Signal Processing Blockset). The
positive integer N is the Derepeat factor parameter in the Derepeat
dialog.

The Initial condition parameter prescribes elements of the output
when it is still too early for the input data to show up in the output. If
the dimensions of the Initial condition parameter match the output
dimensions, then the parameter represents the initial output value. If
Initial condition is a scalar, then it represents the initial value of
each element in the output.

The input can have any shape or frame status. The block can accept the
data types single and double. The data type of the output will be the
same as that of the input signal.

This block will work within a triggered subsystem, as long as it is used
in the single-rate mode.

Sample-Based Operation

If the input is sample-based, then the block assumes that the input is a
vector or matrix whose elements represent samples from independent
channels. The block averages samples from each channel independently
over time. The output period is N times the input period, and the input
and output sizes are identical. The output is delayed by one output
period, and the first output value is the Initial condition value.

Frame-Based Operation

If the input is frame-based, then the block derepeats each frame,
treating distinct channels independently. Each element of the output
is the average of N consecutive elements along a column of the input
matrix. The Derepeat factor must be less than the frame size.
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The Framing parameter determines how the block adjusts the rate at
the output to accommodate the reduced number of samples. The two
options are:

• Maintain input frame size

The block reduces the sampling rate by using a proportionally
longer frame period at the output port than at the input port. For
derepetition by a factor of N, the output frame period is N times the
input frame period, but the input and output frame sizes are equal.
The output is delayed by one output frame, and the first output frame
is determined only by the Initial condition value.

For example, if a single-channel input with a frame period of 1 second
is derepeated by a factor of 4, then the output has a frame period of
4 seconds. The input and output frame sizes are equal.

• Maintain input frame rate

The block reduces the sampling rate by using a proportionally
smaller frame size than the input. For derepetition by a factor of N,
the output frame size is 1/N times the input frame size, but the input
and output frame rates are equal. When you use this option, the
Initial condition parameter does not apply and the block incurs no
delay, because the input data immediately shows up in the output.

For example, if a single-channel input with 64 elements is derepeated
by a factor of 4, then the output contains 16 elements. The input and
output frame periods are equal.
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Dialog
Box

Derepeat factor, N
The number of consecutive input samples to average in order to
produce each output sample.

Initial condition
The value with which to initialize the block.

Framing
For frame-based operation, the method by which to reduce the
amount of data. One method decreases the frame rate while
maintaining frame size, while the other decreases the frame size
while maintaining frame rate.

See Also Repeat (Signal Processing Blockset), Downsample (Signal Processing
Blockset)
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Descrambler

Purpose Descramble input signal

Library Sequence Operations

Description The Descrambler block descrambles the input signal, which must be a
scalar or a frame-based column vector. The Descrambler block is the
inverse of theScrambler block. If you use the Scrambler block in the
transmitter, then you should use the Descrambler block in the receiver.

Below is a schematic of the descrambler. All adders perform subtraction
modulo N, where N is the Calculation base parameter. The input
values must be integers between 0 and N-1.
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At each time step, the input causes the contents of the registers to shift
sequentially. Each switch in the descrambler is on or off as defined by
the Scramble polynomial parameter. To make the Descrambler block
reverse the operation of the Scrambler block, use the same Scramble
polynomial parameters in both blocks. The Initial states can be
different in the two blocks, considering the transmitting and receiving
filter delay. See the reference page for theScrambler block for more
information about these parameters.
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Dialog
Box

Calculation base
The calculation base N. The input and output of this block are
integers in the range [0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states
The states of the scrambler’s registers when the simulation starts.

Pair Block Scrambler
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Differential Decoder

Purpose Decode binary signal using differential coding

Library Source Coding

Description The Differential Decoder block decodes the binary input signal. The
output is the logical difference between the present input and the
previous input. More specifically, the block’s input and output are
related by

m(t0) = d(t0) XOR Initial condition parameter value

m(tk) = d(tk) XOR d(tk-1)

where

• d is the differentially encoded input.

• m is the output message.

• tk is the kth time step.

• XOR is the logical exclusive-or operator.

The input can be either a scalar or a vector. This block processes each
vector element independently.
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Dialog
Box

Initial condition
The logical exclusive-or of this value with the initial input value
forms the initial output value.

References [1] Couch, Leon W., II, Digital and Analog Communication Systems,
Sixth edition, Upper Saddle River, N. J., Prentice Hall, 2001.

Pair Block Differential Encoder
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Purpose Encode binary signal using differential coding

Library Source Coding

Description The Differential Encoder block encodes the binary input signal. The
output is the logical difference between the present input and the
previous output. More specifically, the input and output are related by

d(t0) = m(t0) XOR Initial condition parameter value

d(tk) = d(tk-1) XOR m(tk)

where

• m is the input message

• d is the differentially encoded output.

• tk is the kth time step.

• XOR is the logical exclusive-or operator.

The input can be either a scalar or a vector. This block processes each
vector element independently.
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Dialog
Box

Initial condition
The logical exclusive-or of this value with the initial input value
forms the initial output value.

References [1] Couch, Leon W., II, Digital and Analog Communication Systems,
Sixth edition, Upper Saddle River, N. J., Prentice Hall, 2001.

Pair Block Differential Decoder
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Discrete-Time Eye Diagram Scope

Purpose Display multiple traces of modulated signal

Library Comm Sinks

Description The Discrete-Time Eye Diagram Scope block displays multiple traces of
a modulated signal to produce an eye diagram. You can use the block
to reveal the modulation characteristics of the signal, such as pulse
shaping or channel distortions.

The Discrete-Time Eye Diagram Scope block has one input port. The
block accepts signal of type double, single, boolean, base integer, and
fixed-point data types for input, but will cast it as double. The input
signal must be a sample-based scalar in sample-based mode. The input
must be a frame-based column vector or a scalar in frame-based mode.

Marker and Line Styles

The Marker, Line style, and Line color parameters, on the
Rendering Properties panel, control the appearance of the signal
trajectory. The Marker parameter specifies the marker style for points
in the eye diagram. The following table lists some of the available line
markers.

Marker
Style

Parameter
Symbol Appearance

Plus +

Circle o

Asterisk *

Point .

Cross x

The Line style parameter specifies the style for lines in the eye
diagram. The following lists some of the available line styles.
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Line Style Appearance

Solid

Dashed

Dotted

Dash-dot

The Line color parameter specifies the color of the eye diagram. These
settings plot the signal channels in the following colors (8-bit RGB
equivalents are shown in the center column).

Color
RGB
Equivalent Appearance

Black (0,0,0)

Blue (0,0,255)

Red (255,0,0)

Green (0,255,0)

Dark
purple

(192,0,192)

See the line function in the MATLAB documentation for more
information about the available markers, colors, and line styles.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Eye Diagram Scope.
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Parameter Recommended Setting

Samples per symbol Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor setting in the interpolation
block

Offset (samples) 0 to view the open part of the eye
(Samples per symbol)/2 to view
the closed part of the eye

Symbols per trace An integer between 1 and 4

Traces displayed 10 times the alphabet size of the
modulator, M

New traces per display Same as Traces displayed for
greater speed A small positive
integer for best animation

Marker None or a point (.) to see where
the samples are plotted

Line style Solid dash (-)

Line color Blue (b)

Duplicate points at trace
boundary

Check Duplicate points at
trace boundary for modulations
such as PSK and QAM.

Clear to display the phase trees
for MSK, CPFSK, GFSK, GMSK,
and other continuous phase
modulations.

Color fading Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.
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Parameter Recommended Setting

High quality rendering Check High quality rendering
for better animation.

Clear for greater speed.

Eye diagram to display Select In-phase and
Quadrature to view real and
imaginary components.

Select In-phase Only to view
real component only and for
greater speed.

When the input is real and
you choose In-phase and
Quadrature, the quadrature
component of the eye diagram is
zero.

Open at start of simulation Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.

Y-axis minimum Approximately 10% less than the
expected minimum value of the
signal

Y-axis maximum Approximately 10% greater than
the expected maximum value of
the signal

Scope Options

The scope title (in the window title bar) is the same as the block title.
You can set the axis scaling by setting the y-axis minimum and y-axis
maximum parameters on the Axes Properties panel.

2-129



Discrete-Time Eye Diagram Scope

In addition to the standard MATLAB figure window menus (File,
Edit, Window, Help), the Vector Scope window has an Axes and
a Channels menu.

The properties listed in the Axes menu apply to all channels. Many
of the parameters in this menu are also accessible through the block
parameter dialog box. These are Autoscale, Show grid, Frame #, and
Save Position. Below are descriptions of the other parameters listed
in the Axes menu:

• Autoscale resizes the y-axis to best fit the vertical range of the data.
The numerical limits selected by the autoscale feature are displayed
in the Minimum Y-limit and Maximum Y-limit parameters in the
parameter dialog box. You can change them by editing those values.

• Show grid - When selected, the scope displays a grid according to
tick marks on the x- and y-axes.

• Frame # - When selected, the scope displays the current frame
number at the bottom of the scope window.

• Save Position automatically updates the Scope position
parameter in the Figure properties panel to reflect the scope
window’s current position and size. To make the scope window open
at a particular location on the screen when the simulation runs,
simply drag the window to the desired location, resize it as needed,
and select Save Position.

The properties listed in the Channels menu apply to a particular
channel. The parameters listed in this menu are Style, Marker, and
Color. They correspond to the parameters Line style, Marker, and
Line color, respectively.

You can also access many of these options by right-clicking with the
mouse anywhere on the scope display. The menu that pops up contains
a combination of the options available in both the Axes and Channels
menus.
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Dialog
Box

Samples per symbol
Number of samples per symbol. Use with Symbols per trace to
determine the number of samples per trace.

Offset (samples)
Nonnegative integer less than the product of Samples per
symbol and Symbols per trace, specifying the number of
samples to omit before plotting the first point. Tunable.

Symbols per trace
Positive integer specifying the number of symbols plotted per
trace.

Traces displayed
Number of traces plotted.

New traces per display
Positive integer less than Traces displayed, specifying the
number of new traces that appear in each display.
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Markers
The marker for points in the eye diagram. Tunable.

Line style
The line style in the eye diagram. Tunable.

Line color
The line color in the eye diagram. Tunable.

Duplicate points at trace boundary
Check to enable duplicate points at the trace boundary. Clear
to disable.

Color fading
When selected, the points in the eye diagram fade as the interval
of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders
a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.
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Y-axis minimum
Minimum signal value the scope displays. Tunable.

Y-axis maximum
Maximum signal value the scope displays. Tunable.

In-phase Y-axis label
Label for y-axis of the in-phase diagram. Tunable.

Quadrature Y-axis label
Label for y-axis of the quadrature diagram. Tunable.

Open scope at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope. Tunable.
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Eye diagram to display
Type of eye diagram to display. Choose In-phase and
Quadrature to display real and complex components, or In-phase
Only to display only the real component. Tunable.

Trace number
Displays the number of the current trace in the input sequenced.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of eye diagram figure window. Tunable.

Examples For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

Also, the following Communications Blockset demos illustrate how to
use the Discrete-Time Eye Diagram Scope block:

• CPM Phase Tree Example

• Filtered Offset QPSK vs. Filtered QPSK

• Rayleigh Fading Channel

• QPSK vs. MSK

See Also Discrete-Time Scatter Plot Scope, Discrete-Time Signal Trajectory Scope
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Discrete-Time Scatter Plot Scope

Purpose Display the in-phase and quadrature components of modulated signal
constellation

Library Comm Sinks

Description The Discrete-Time Scatter Plot Scope block displays scatter plots of a
modulated signal, to reveal the modulation characteristics, such as
pulse shaping or channel distortions of the signal.

The Discrete-Time Scatter Plot Scope block has one input port. The
input signal must be complex. The input signal must be complex.
The block accepts signal of type double, single, base integer, and
fixed-point for input, but will cast it as double. The input signal must
be a sample-based scalar in sample-based mode. The input must be a
frame-based column vector or a scalar in frame-based mode.

See the reference page for the Discrete-Time Signal Trajectory Scope
block to compare the preceding scatter plot with the trajectory of the
same signal. The Discrete-Time Signal Trajectory Scope block connects
the points displayed by the Discrete-Time Scatter Plot Scope block to
display the signal trajectory.

Setting Samples per symbol to 8, increasing Points displayed to
100, and running the model for 100 seconds produces the following
scatter plot.
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Markers and Color

The Markers and Color parameters, on the Rendering Properties
panel, specify the style and color of markers in the scatter plot. For
details on the options for these parameters, see the reference page for
the Discrete-Time Eye Diagram Scope block.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Scatter Plot Scope.
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Parameter Recommended Setting

Samples per symbol Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor setting in the interpolation
block

Points displayed 10 times the alphabet size of the
modulator

New points per display Same as Points displayed for
greater speed

A small positive integer for best
animation

Line style Solid dash (-)

Line color Blue (b)

Color fading Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.

High quality rendering Check High quality rendering
for higher quality rendering.

Clear for greater speed.

Open at start of simulation Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.
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Parameter Recommended Setting

X-axis minimum Approximately 10% less than the
expected minimum value of the
signal

X-axis maximum Approximately 10% greater than
the expected maximum value of
the signal

Dialog
Box

Samples per symbol
Number of samples per symbol.

Offset (samples)
Nonnegative integer less than the number of samples per symbol,
specifying the number of samples to skip before plotting points.
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Points displayed
Total number of points plotted.

New points per display
Number of new points that appear in each display.

Markers
Line markers used in the scatter plot. Tunable.

Line color
The line color used in the scatter plot. Tunable.

Color fading
When selected, the points in the scatter plot fade as the interval
of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders
a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.
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X-axis minimum
Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum
Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum
Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum
Maximum signal value the scope displays on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.
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Open at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope.

Point number
Displays the number of the current point in the input sequence.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of scatter plot. Tunable.

Examples For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

The following demos in the Communications Blockset illustrate how to
use the Discrete-Time Scatter Plot Scope block:

• Digital Video Broadcasting Model

• DS Spread Spectrum Example
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• HiperLAN/2

• Phase Noise Effects in 256 QAM

• Rayleigh Fading Channel

See Also Discrete-Time Eye Diagram Scope, Discrete-Time Signal Trajectory
Scope, Real-Imag to Complex
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Purpose Plot modulated signal’s in-phase component versus its quadrature
component

Library Comm Sinks

Description The Discrete-Time Signal Trajectory Scope displays the trajectory of a
modulated signal in its signal space by plotting its in-phase component
versus its quadrature component.

The Discrete-Time Signal Trajectory Scope block has one input port.
The input signal must be complex. The block accepts signal of type
double, single, base integer, and fixed-point for input, but will cast
it as double. The input signal must be a sample-based scalar in
sample-based mode. The input must be a frame-based column vector
or a scalar in frame-based mode.

Line Style and Color

The Line style and Line color parameters on the Rendering
Properties panel control the appearance of the signal trajectory.
The Line style parameter specifies the style for lines in the signal
trajectory. For details on the options for these parameters, see the
reference page for the Discrete-Time Eye Diagram Scope block.

Recommended Settings

The following table summarizes the recommended parameter settings
for the Discrete-Time Signal Trajectory Scope.

Parameter Recommended Setting

Samples per symbol Same as the Samples per
symbol setting in the modulator
block, or the Interpolation
factor used in the interpolation
block

Symbols displayed 10 times the alphabet size of the
modulator, M
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Parameter Recommended Setting

New symbols per display Same as Symbols displayed for
greater speed

A small positive integer for best
animation

Line style Solid dash (-)

Line color Blue (b)

Color fading Check Color fading for
animation that resembles an
oscilloscope.

Clear for greater speed and
animation that resembles a plot.

High quality rendering Check High quality rendering
for higher quality rendering.

Clear for greater speed.

Open at start of simulation Check Open at start of
simulation to view the signal at
the start of simulation.

Clear to view the signal after
convergence to steady state and
for greater initial speed.

Y-axis minimum Approximately 10% less than the
expected minimum value of the
signal

Y-axis maximum Approximately 10% greater than
the expected maximum value of
the signal
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Dialog
Box

Samples per symbol
Number of samples per symbol.

Symbols displayed
Total number of symbols plotted.

New symbols per display
Number of new symbols that appear in each display.
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Line markers
The line markers used in the signal trajectory. Tunable.

Line color
The line color used in the signal trajectory. Tunable.

Color fading
When selected, the points in the signal trajectory fade as the
interval of time after they are first plotted increases. Tunable.

High quality rendering
When selected, the block renders a slow, higher-quality picture
with overwrite raster operations. When cleared, the block renders
a fast, lower-quality picture with XOR raster operations. Tunable.

Show grid
Toggles the scope grid on and off. Tunable.
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X-axis minimum
Minimum value the scope displays on the x-axis. Tunable.

X-axis maximum
Maximum value the scope displays on the x-axis. Tunable.

Y-axis minimum
Minimum signal value the scope displays on the y-axis. Tunable.

Y-axis maximum
Maximum signal value the scope display on the y-axis. Tunable.

In-phase X-axis label
Label for x-axis. Tunable.

Quadrature Y-axis label
Label for y-axis. Tunable.
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Open at start of simulation
When selected, the scope opens at the start of simulation.
When cleared, you must double-click the block after the start of
simulation to open the scope. Tunable

Symbol number
Displays the number of the current symbol in the input sequence.
Tunable.

Scope position
A four-element vector of the form [left bottom width height]
specifying the position of the scope window. (0,0) is the lower left
corner of the display. Tunable.

Title
Title of signal trajectory plot. Tunable.

Examples For documentation examples that use this block, see “Example: Viewing
a Sinusoid” and “Example: Viewing a Modulated Signal”.

Also, the following demos in the Communications Blockset illustrate
how to use the Discrete-Time Signal Trajectory Scope:

• Filtered Offset QPSK vs. Filtered QPSK

• GMSK vs. MSK
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See Also Discrete-Time Eye Diagram Scope, Discrete-Time Scatter Plot Scope
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Discrete-Time VCO

Purpose Implement voltage-controlled oscillator in discrete time

Library Components sublibrary of Synchronization

Description The Discrete-Time VCO (voltage-controlled oscillator) block generates a
signal whose frequency shift from the Quiescent frequency parameter
is proportional to the input signal. The input signal is interpreted as a
voltage. If the input signal is u(t), then the output signal is

y t A f t k u dc c c
t

( ) cos ( ) )= + +⎛
⎝⎜

⎞
⎠⎟∫2 2

0
π π τ τ ϕ

where Ac is the Output amplitude, fc is the Quiescent frequency, kc

is the Input sensitivity, and ϕ is the Initial phase

This block uses a discrete-time integrator to interpret the equation
above.

The input and output signals can be scalars of data type single or
double. The data type of the output will be the same as that of the
input signal.
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Dialog
Box

Output amplitude
The amplitude of the output.

Quiescent frequency (Hz)
The frequency of the oscillator output when the input signal is
zero.

Input sensitivity
This value scales the input voltage and, consequently, the shift
from the Quiescent frequency value. The units of Input
sensitivity are Hertz per volt.

Initial phase (rad)
The initial phase of the oscillator in radians.

Sample time
The calculation sample time.

See Also Continuous-Time VCO
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Purpose Demodulate DQPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The DQPSK Demodulator Baseband block demodulates a signal that
was modulated using the differential quaternary phase shift keying
method. The input is a baseband representation of the modulated
signal.

The input must be a discrete-time complex signal. The output depends
on the phase difference between the current symbol and the previous
symbol. The first integer (or binary pair, if the Output type parameter
is set to Bit) in the block’s output is the initial condition of zero because
there is no previous symbol.

The input can be either a scalar or a frame-based column vector. The
block accepts the input data types single and double.

Outputs and Constellation Types

If the Output type parameter is set to Integer, then the block maps a
phase difference of

θ + πm/2

to m, where θ is the Phase rotation parameter and m is 0, 1, 2, or 3.

If the Output type parameter is set to Bit, then the output contains
pairs of binary values. The reference page for theDQPSK Modulator
Baseband block shows which phase differences map to each binary pair,
for the cases when the Constellation ordering parameter is either
Binary or Gray.
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Dialog
Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output
bits. This field is active only when Output type is set to Bit.

Phase rotation (rad)
This phase difference between the current and previous modulated
symbols results in an output of zero.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block DQPSK Modulator Baseband

See Also M-DPSK Demodulator Baseband, DBPSK Demodulator Baseband,
QPSK Demodulator Baseband
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Purpose Modulate using differential quaternary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The DQPSK Modulator Baseband block modulates using the differential
quaternary phase shift keying method. The output is a baseband
representation of the modulated signal.

The input must be a discrete-time signal. For integer inputs, the block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. For bit inputs, the block can accept int8, uint8,
int16, uint16, int32, uint32, boolean, single, and double.

Inputs and Constellation Types

If the Input type parameter is set to Integer, then valid input values
are 0, 1, 2, and 3. In this case, the input can be either a scalar or a
frame-based column vector. If the first input is m, then the modulated
symbol is

exp(jθ + jπm/2)

where θ is the Phase rotation parameter. If a successive input is m,
then the modulated symbol is the previous modulated symbol multiplied
by exp(jθ + jπm/2).

If the Input type parameter is set to Bit, then the input contains pairs
of binary values. The input can be either a vector of length two or a
frame-based column vector whose length is an even integer. The figure
below shows the complex numbers by which the block multiples the
previous symbol to compute the current symbol, depending on whether
the Constellation ordering parameter is set to Binary or Gray. The
figure assumes that the Phase rotation parameter is set to pi/4; in
other cases, the two schematics would be rotated accordingly.
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The figure below shows the signal constellation for the DQPSK
modulation method when the Phase rotation parameter is π/4. The
arrows indicate the four possible transitions from each symbol to the
next symbol. The Binary and Gray options determine which transition
is associated with each pair of input values.
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More generally, if the Phase rotation parameter has the form π/k for
some integer k, then the signal constellation has 2k points.

Dialog
Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output Data type
The output data type can be either single or double. By default,
the block sets this to double.

Pair Block DQPSK Demodulator Baseband
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See Also M-DPSK Modulator Baseband, DBPSK Modulator Baseband, QPSK
Modulator Baseband
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DSB AM Demodulator Passband

Purpose Demodulate DSB-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The DSB AM Demodulator Passband block demodulates a signal that
was modulated using double-sideband amplitude modulation. The
block uses the envelope detection method. The input is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

In the course of demodulating, this block uses a filter whose order,
coefficients, passband ripple and stopband ripple are described by their
respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.
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Dialog
Block

Input signal offset
The same as the Input signal offset parameter in the
corresponding DSB AM Modulator Passband block.

Carrier frequency (Hz)
The frequency of the carrier in the corresponding DSB AM
Modulator Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are
Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass
filter design method field .
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Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the
Lowpass filter design method field in Hertz.

Passband ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is
peak-to-peak ripple in the passband in dB.

Stopband ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the
peak-to-peak ripple in the stopband in dB.

Pair Block DSB AM Modulator Passband
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Purpose Modulate using double-sideband amplitude modulation

Library Analog Passband Modulation, in Modulation

Description The DSB AM Modulator Passband block modulates using
double-sideband amplitude modulation. The output is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

( ( ) ) cos( )u t k f tc+ +2π θ

where:

• k is the Input signal offset parameter.

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

It is common to set the value of k to the maximum absolute value of the
negative part of the input signal u(t).

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.
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Dialog
Box

Input signal offset
The offset factor k. This value should be greater than or equal to
the absolute value of the minimum of the input signal.

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier.

Pair Block DSB AM Demodulator Passband

See Also DSBSC AM Modulator Passband, SSB AM Modulator Passband
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Purpose Demodulate DSBSC-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The DSBSC AM Demodulator Passband block demodulates a signal that
was modulated using double-sideband suppressed-carrier amplitude
modulation. The input is a passband representation of the modulated
signal. Both the input and output signals are real sample-based scalar
signals.

In the course of demodulating, this block uses a filter whose order,
coefficients, passband ripple and stopband ripple are described by the
their respective lowpass filter parameters.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.
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Dialog
Box

Carrier frequency (Hz)
The carrier frequency in the corresponding DSBSC AM Modulator
Passband block.

Initial phase (rad)
The initial phase of the carrier in radians.

Lowpass filter design method
The method used to generate the filter. Available methods are
Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass
filter design method field .

Cutoff frequency (Hz)
The cutoff frequency of the lowpass digital filter specified in the
Lowpass filter design method field in Hertz.

Passband Ripple (dB)
Applies to Chebyshev type I and Elliptic filters only. This is
peak-to-peak ripple in the passband in dB.
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Stopband Ripple (dB)
Applies to Chebyshev type II and Elliptic filters only. This is the
peak-to-peak ripple in the stopband in dB.

Pair Block DSBSC AM Modulator Passband

See Also DSB AM Demodulator Passband, SSB AM Demodulator Passband

2-165



DSBSC AM Modulator Passband

Purpose Modulate using double-sideband suppressed-carrier amplitude
modulation

Library Analog Passband Modulation, in Modulation

Description The DSBSC AM Modulator Passband block modulates using
double-sideband suppressed-carrier amplitude modulation. The output
is a passband representation of the modulated signal. Both the input
and output signals are real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

u t f tc( ) cos( )2π θ+

where fc is the Carrier frequency parameter and θ is the Initial
phase parameter.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box
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Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Pair Block DSBSC AM Demodulator Passband

See Also DSB AM Modulator Passband, SSB AM Modulator Passband
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Early-Late Gate Timing Recovery

Purpose Recover symbol timing phase using early-late gate method

Library Timing Phase Recovery sublibrary of Synchronization

Description The Early-Late Gate Timing Recovery block recovers the symbol timing
phase of the input signal using the early-late gate method. This block
implements a non-data-aided feedback method.

Inputs

By default, the block has one input port. Typically, the input signal is
the output of a receive filter that is matched to the transmitting pulse
shape. For best results, the input signal power should be normalized.
The input must be a scalar or a frame-based column vector. The input
uses N samples to represent each symbol, where N > 1 is the Samples
per symbol parameter. If the input is frame-based, then its vector
length is N*R, where R is a positive integer that indicates the number
of symbols per frame. If the input is sample-based, then its sample time
is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines
when the timing estimation process restarts, and must be a scalar. The
sample time of the Rst input equals the symbol period if the input signal
is sample-based, and the frame period if the input signal is frame-based.

Typically, Samples per symbol is at least 4 and the input signal is
shaped using a raised cosine filter.

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each
symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:
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- If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.

- If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

• The Ph output gives the phase estimate for each symbol in the input
signal.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input is frame-based
and three symbols when the input is sample-based.
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Dialog
Box

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.

Algorithm This block uses a timing error detector whose result for the kth symbol
is e(k), given by
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where

• yI and yQ are the in-phase and quadrature components, respectively,
of the block’s input signal

• T is the symbol period

• dk is the phase estimate for the kth symbol

For more information about the role that e(k) plays in this block’s
algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

References [1] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[2] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

See Also Gardner Timing Recovery, Squaring Timing Recovery, Mueller-Muller
Timing Recovery
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Error Rate Calculation

Purpose Compute bit error rate or symbol error rate of input data

Library Comm Sinks

Description The Error Rate Calculation block compares input data from a
transmitter with input data from a receiver. It calculates the error
rate as a running statistic, by dividing the total number of unequal
pairs of data elements by the total number of input data elements from
one source.

You can use this block to compute either symbol or bit error rate,
because it does not consider the magnitude of the difference between
input data elements. If the inputs are bits, then the block computes the
bit error rate. If the inputs are symbols, then it computes the symbol
error rate.

This block inherits the sample time of its inputs.

Input Data

This block has between two and four input ports, depending on how
you set the dialog parameters. The inports marked Tx and Rx accept
transmitted and received signals, respectively. The Tx and Rx signals
must share the same sampling rate.

The Tx and Rx inputs can be either scalars or frame-based column
vectors of data type int8, uint8, int16, uint16, int32, uint32,
boolean, single, or double. If Tx is a scalar and Rx is a vector, or
vice-versa, then the block compares the scalar with each element of the
vector. (Overall, the block behaves as if you had preprocessed the scalar
signal with the Signal Processing Blockset’s Repeat block using the
Maintain input frame rate option.)

If you check the Reset port box, then an additional inport appears,
labeled Rst. The Rst input must be a sample-based scalar signal (of
type double or boolean) and must have the same sampling rate as the
Tx and Rx signals. When the Rst input is nonzero, the block clears its
error statistics and then computes them anew.
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If you set the Computation mode parameter to Select samples from
port, then an additional inport appears, labeled Sel. The Sel input
indicates which elements of a frame are relevant for the computation;
this is explained further, in the last subbullet below. The Sel input can
be either a sample-based column vector or a one-dimensional vector
of type double.

The guidelines below indicate how you should configure the inputs
and the dialog parameters depending on how you want this block to
interpret your Tx and Rx data.

• If both data signals are scalar, then this block compares the Tx scalar
signal with the Rx scalar signal. You should leave the Computation
mode parameter at its default value, Entire frame.

• If both data signals are vectors, then this block compares some or
all of the Tx and Rx data:

- If you set the Computation mode parameter to Entire frame,
then the block compares all of the Tx frame with all of the Rx frame.

- If you set the Computation mode parameter to Select samples
from mask, then the Selected samples from frame field appears
in the dialog. This parameter field accepts a vector that lists the
indices of those elements of the Rx frame that you want the block to
consider. For example, to consider only the first and last elements
of a length-six receiver frame, set the Selected samples from
frame parameter to [1 6]. If the Selected samples from frame
vector includes zeros, then the block ignores them.

- If you set the Computation mode parameter to Select samples
from port, then an additional input port, labeled Sel, appears on
the block icon. The data at this input port must have the same
format as that of the Selected samples from frame parameter
described above.

• If one data signal is a scalar and the other is a vector, then this
block compares the scalar with each entry of the vector. The three
subbullets above are still valid for this mode, except that if Rx is
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a scalar, then the phrase “Rx frame” above refers to the vector
expansion of Rx.

Note Simulink requires that input signals have constant length
throughout a simulation. If you choose the Select samples from
port option and want the number of elements in the subframe to
vary during the simulation, then you should pad the Sel signal with
zeros. (See the Zero Pad block in the Signal Processing Blockset.)
The Error Rate Calculation block ignores zeros in the Sel signal.

Output Data

This block produces a vector of length three, whose entries correspond
to:

• The error rate

• The total number of errors, that is, comparisons between unequal
elements

• The total number of comparisons that the block made

The block sends this output data to the base MATLAB workspace or to
an output port, depending on how you set the Output data parameter:

• If you set the Output data parameter to Workspace and fill in the
Variable name parameter, then that variable in the base MATLAB
workspace contains the current value when the simulation ends.
Pausing the simulation does not cause the block to write interim
data to the variable.

If you plan to use this block along with the Real-Time Workshop, then
you should not use the Workspace option; instead, use the Port option
below and connect the output port to a Simulink To Workspace block.

• If you set the Output data parameter to Port, then an output port
appears. This output port contains the running error statistics.
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Delays

The Receive delay and Computation delay parameters implement
two different types of delays for this block. One is useful when part of
your model causes a lag in the received data, and the other is useful
when you want to ignore the transient behavior of both input signals:

• The Receive delay parameter is the number of samples by which
the received data lags behind the transmitted data. This parameter
tells the block which samples "correspond" to each other and should
be compared. The receive delay persists throughout the simulation.

• The Computation delay parameter tells the block to ignore the
specified number of samples at the beginning of the comparison.

If you do not know the receive delay in your model, you can use the
Align Signals block, which automatically compensates for the delay. If
you use the Align Signals block, you should set the Receive delay in
the Error Rate Calculation block to 0.

Alternatively, you can use the Find Delay block to find the value of the
delay, and then set the Receive delay parameter in the Error Rate
Calculation block to that value.

Note The Version 1.4 Error Rate Calculation block considers a vector
input to be a sample, whereas the current block considers a vector input
to be a frame of multiple samples. For vector inputs of length n, a
Receive delay of k in the Version 1.4 block is equivalent to a Receive
delay of k*n in the current block.

If you use the Select samples from mask or Select samples from
port option, then each delay parameter refers to the number of samples
that the block receives, whether the block ultimately ignores some of
them or not.
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Stopping the Simulation Based on Error Statistics

You can configure this block so that its error statistics control the
duration of simulation. This is useful for computing reliable steady-state
error statistics without knowing in advance how long transient effects
might last. To use this mode, check the Stop simulation check box. The
block attempts to run the simulation until it detects Target number
of errors errors. However, the simulation stops before detecting
enough errors if the time reaches the model’s Stop time setting (in the
Configuration Parameters dialog box), if the Error Rate Calculation
block makes Maximum number of symbols comparisons, or if
another block in the model directs the simulation to stop.

To ignore either of the two stopping criteria in this block, set the
corresponding parameter (Target number of errors or Maximum
number of symbols) to Inf. For example, to reach a target number of
errors without stopping the simulation early, set Maximum number
of symbols to Inf and set the model’s Stop time to Inf.

Examples The figure below shows how the block compares pairs of elements
and counts the number of error events. This example assumes that
the sample time of each input signal is 1 second and that the block’s
parameters are as follows:

• Receive delay = 2

• Computation delay = 0

• Computation mode = Entire frame

The input signals are both frame-based column vectors of length three.
However, the schematic arranges each column vector horizontally and
aligns pairs of vectors so as to reflect a receive delay of two samples. At
each time step, the block compares elements of the Rx signal with those
of the Tx signal that appear directly above them in the schematic. For
instance, at time 1, the block compares 2, 4, and 1 from the Rx signal
with 2, 3, and 1 from the Tx signal.
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The values of the first two elements of Rx appear as asterisks because
they do not influence the output. Similarly, the 6 and 5 in the Tx signal
do not influence the output up to time 3, though they would influence
the output at time 4.

In the error rates on the right side of the figure, each numerator at time
t reflects the number of errors when considering the elements of Rx
up through time t.
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If the block’s Reset port box had been checked and a reset had occurred
at time = 3 seconds, then the last error rate would have been 2/3 instead
of 4/10. This value 2/3 would reflect the comparison of 3, 2, and 1 from
the Rx signal with 7, 7, and 1 from the Tx signal. The figure below
illustrates this scenario.
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Tuning Parameters in an RSim Executable (Real-Time Workshop)

If you use the Real-Time Workshop rapid simulation (RSim) target to
build an RSim executable, then you can tune the Target number
of errors and Maximum number of symbols parameters without
recompiling the model. This is useful for Monte Carlo simulations in
which you run the simulation multiple times (perhaps on multiple
computers) with different amounts of noise.
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Dialog
Box

Receive delay
Number of samples by which the received data lags behind
the transmitted data. (If Tx or Rx is a vector, then each entry
represents a sample.)

Computation delay
Number of samples that the block should ignore at the beginning
of the comparison.

Computation mode
Either Entire frame, Select samples from mask, or Select
samples from port, depending on whether the block should
consider all or only part of the input frames.
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Selected samples from frame
A vector that lists the indices of the elements of the Rx frame
vector that the block should consider when making comparisons.
This field appears only if Computation mode is set to Select
samples from mask.

Output data
Either Workspace or Port, depending on where you want to send
the output data.

Variable name
Name of variable for the output data vector in the base MATLAB
workspace. This field appears only if Output data is set to
Workspace.

Reset port
If you check this box, then an additional input port appears,
labeled Rst.

Stop simulation
If you check this box, then the simulation runs only until this
block detects a specified number of errors or performs a specified
number of comparisons, whichever comes first.

Target number of errors
The simulation stops after detecting this number of errors. This
field is active only if Stop simulation is checked.

Maximum number of symbols
The simulation stops after making this number of comparisons.
This field is active only if Stop simulation is checked.

See Also Align Signals, Find Delay
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Purpose Find delay between two signals

Library Utility Blocks

Description The Find Delay block finds the delay between a signal and a delayed,
and possibly distorted, version of itself. The block is particularly useful
when you want to compare a transmitted and received signal to find the
bit error rate, but do not know the delay in the received signal. See
“Computing Delays” for more information about signal delays.

The input port labeled sRef receives the original signal, while the input
port labeled sDel receives the delayed version of the signal. The two
input signals must have the same sample times.

The output port labeled delay outputs the delay in units of samples. If
you select Include "change signal" output port, then an output
port labeled chg appears. The chg output port outputs 1 when there is a
change from the delay computed at the previous sample, and 0 when
there is no change. The output ports output signals of type double for
double inputs, and uint32 for inputs of other non-double data types.

The block’s Correlation window length parameter specifies
how many samples of the signals the block uses to calculate the
cross-correlation. The delay output is a nonnegative integer less than
the Correlation window length.

You can make the Find Delay block stop updating the delay after it
computes the same delay value for a specified number of samples. To
do so, select the Disable recurring updates check box, and enter a
positive integer in the Number of constant delay outputs to disable
updates field. For example, if you set Number of constant delay
outputs to disable updates to 20, the block will stop recalculating
and updating the delay after it calculates the same value 20 times in
succession. Disabling recurring updates causes the simulation to run
faster after the target number of constant delays occurs.
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Tips for Using the Block Effectively

• Set Correlation window length sufficiently large so that the
computed delay eventually stabilizes at a constant value. When
this occurs, the signal from the optional chg output port stabilizes
at the constant value of zero. If the computed delay is not constant,
you should increase Correlation window length. If the increased
value of Correlation window length exceeds the duration of
the simulation, then you should also increase the duration of the
simulation accordingly.

• If the cross-correlation between the two signals is broad, then the
Correlation window length value should be much larger than the
expected delay, or else the algorithm might stabilize at an incorrect
value. For example, a CPM signal has a broad autocorrelation, so
it has a broad cross-correlation with a delayed version of itself. In
this case, the Correlation window length value should be much
larger than the expected delay.

• If the block calculates a delay that is greater than 75 percent of the
Correlation window length, the signal sRef is probably delayed
relative to the signal sDel. In this case, you should switch the signal
lines leading into the two input ports.

Examples Finding the Delay Before Calculating an Error Rate

A typical use of this block is to determine the correct Receive
delay parameter in the Error Rate Calculation block. This is
illustrated in “Finding the Delay in a Model”. In that example, the
modulation/demodulation operation introduces a computational delay
into the received signal and the Find Delay block determines that the
delay is 6 samples. This value of 6 becomes a parameter in the Error
Rate Calculation block, which computes the bit error rate of the system.

Another example of this usage is in “Computing Delays”.

Finding the Delay to Help Align Words

Another typical use of this block is to determine how to align the
boundaries of frames with the boundaries of codewords or other types of
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data blocks. “Manipulating Delays” describes when such alignment is
necessary and also illustrates, in the “Aligning Words of a Block Code”
discussion, how to use the Find Delay block to solve the problem.

Setting the Correlation Window Length

The next example illustrates how to tell when the Correlation
window length is not sufficiently large.

The model uses a Delay block to delay a signal by 10 samples, and uses
the Find Delay block to compare the original signal with the delayed
version. The model then displays the output of the Find Delay block in a
scope. If the Correlation window length is 15, the scope shows that
the calculated delay is not constant over time, as you can see below.

This result tells you to increase the Correlation window length. If
you increase it to 50, the calculated delay stabilizes at 10, as shown
below.
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Dialog
Box

Correlation window length
The number of samples the block uses to calculate the
cross-correlations of the two signals.

Include "change signal" output port
If you select this option, then the block has an extra output port
that emits an impulse when the current computed delay differs
from the previous computed delay.

Disable recurring updates
Selecting this option causes the block to stop computing the delay
after it computes the same delay value for a specified number
of samples.
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Number of constant delay outputs to disable updates
A positive integer specifying how many times the block must
compute the same delay before ceasing to update. This field
appears only if Disable recurring updates is selected.

Algorithm The Find Delay block finds the delay by calculating the cross-correlations
of the first signal with time-shifted versions of the second signal, and
then finding the index at which the cross-correlation is maximized.

See Also Align Signals, Error Rate Calculation
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Purpose Demodulate FM-modulated data

Library Analog Passband Modulation, in Modulation

Description The FM Demodulator Passband block demodulates a signal that was
modulated using frequency modulation. The input is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

For best results, use a carrier frequency which is estimated to be
larger than 10% of your input signal’s sample time. This is due to the
implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000
samples per second. We then designate a Hilbert Transform filter of
order 100. Below is the response of the Hilbert Transform filter as
returned by fvtool.
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Note the bandwidth of the filter’s magnitude response. By choosing
a carrier frequency larger than 10% (but less than 90%) of the input
signal’s sample time (8000 samples per second, in this example) or
equivalently, a carrier frequency larger than 400Hz, we ensure that
the Hilbert Transform Filter will be operating in the flat section of the
filter’s magnitude response (shown in blue), and that our modulated
signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.
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This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz.
Sometimes it is referred to as the "variation" in the frequency.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block FM Modulator Passband
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Purpose Modulate using frequency modulation

Library Analog Passband Modulation, in Modulation

Description The FM Modulator Passband block modulates using frequency
modulation. The output is a passband representation of the modulated
signal. The output signal’s frequency varies with the input signal’s
amplitude. Both the input and output signals are real sample-based
scalar signals.

If the input is u(t) as a function of time t, then the output is

cos ( )2 2
0

π π τ τ θf t K u dc c
t

+ +⎛
⎝⎜

⎞
⎠⎟∫

where:

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

• Kc is the Modulation constant parameter.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal.

By the Nyquist sampling theorem, the reciprocal of the model’s sample
time (defined by the model’s signal source) must exceed twice the
Carrier frequency parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

2-189



FM Modulator Passband

Dialog
Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The frequency deviation of the carrier frequency in Hertz.
Sometimes it is referred to as the "variation" in the frequency.

Pair Block FM Demodulator Passband
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Purpose Reduce amplitude of input signal by amount specified

Library RF Impairments

Description The Free Space Path Loss block simulates the loss of signal power due
to the distance between transmitter and receiver. The block reduces
the amplitude of the input signal by an amount that is determined in
either of two ways:

• By the Distance (km) and Carrier frequency (MHz) parameters,
if you specify Distance and Frequency in the Mode field

• By the Loss (dB) parameter, if you specify Decibels in the Mode
field

The input to this block must be a complex signal.

Dialog
Box

Mode
Method of specifying the amount by which the signal power
is reduced. The choices are Decibels and Distance and
Frequency.
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Loss
The signal loss in decibels. This parameter appears when you
set Mode to Decibels.

Distance
Distance between transmitter and receiver in kilometers. This
parameter appears when you set Mode to Distance and
Frequency.

Carrier frequency (MHz)
The carrier frequency in megahertz. This parameter appears
when you set Mode to Distance and Frequency.

Examples The model below illustrates the effect of the Free Space Path Loss block
with the following parameter settings:

• Mode is set to Distance and Frequency.

• Distance (km) is set to 0.5

• Carrier frequency (MHz) is set to 180

See Also Memoryless Nonlinearity
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Purpose Recover symbol timing phase using Gardner’s method

Library Timing Phase Recovery sublibrary of Synchronization

Description The Gardner Timing Recovery block recovers the symbol timing phase
of the input signal using Gardner’s method. This block implements a
non-data-aided feedback method that is independent of carrier phase
recovery. The timing error detector that forms part of this block’s
algorithm requires at least two samples per symbol, one of which is the
point at which the decision can be made.

Inputs

By default, the block has one input port. Typically, the input signal is
the output of a receive filter that is matched to the transmitting pulse
shape. For best results, the input signal power should be less than 1.
The input must be a scalar or a frame-based column vector. The input
uses N samples to represent each symbol, where N > 1 is the Samples
per symbol parameter. If the input is frame-based, then its vector
length is N*R, where R is a positive integer that indicates the number
of symbols per frame. If the input is sample-based, then its sample time
is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines
when the timing estimation process restarts, and must be a scalar. The
sample time of the Rst input equals the symbol period if the input signal
is sample-based, and the frame period if the input signal is frame-based.

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each
symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:
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- If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.

- If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

• The Ph output gives the phase estimate for each symbol in the input.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input is frame-based
and three symbols when the input is sample-based.

2-194



Gardner Timing Recovery

Dialog
Box

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.

Algorithm This block uses a timing error detector whose result for the kth symbol
is e(k), given by
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where

• yI and yQ are the in-phase and quadrature components, respectively,
of the block’s input signal

• T is the symbol period

• dk is the phase estimate for the kth symbol

Notice from the expressions in curly braces above that the timing error
detector approximates the derivative of y using finite differences.

For more information about the role that e(k) plays in this block’s
algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

Examples The gardner_vfracdelay demonstration model uses this block.

References [1] Gardner, F. M., "A BPSK/QPSK Timing-Error Detector for Sampled
Receivers", IEEE Transactions on Communications, Vol. COM-34, No.
5, May 1986, pp. 423-429.

[2] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[3] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital
Communication Receivers, Vol 2, New York, Wiley, 1998.

[4] Oerder, M., "Derivation of Gardner’s Timing-Error Detector from the
ML principle", IEEE Transactions on Communications, Vol. COM-35,
No. 6, June 1987, pp. 684-685.
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See Also Early-Late Gate Timing Recovery, Squaring Timing Recovery,
Mueller-Muller Timing Recovery
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Purpose Filter input signal, possibly downsampling, using Gaussian FIR filter

Library Comm Filters

Description The Gaussian Filter block filters the input signal using a Gaussian FIR
filter. The block expects the input signal to be upsampled, so that the
Input samples per symbol parameter, N, is at least 2. The block’s
icon shows the filter’s impulse response."

Characteristics of the Filter

The impulse response of the Gaussian filter is
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= ln( )2
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and B is the filter’s 3-dB bandwidth. The BT product parameter is B
times the input signal’s symbol period. For a given BT product, the
gaussfir function in the Signal Processing Toolbox generates a filter
that is half the bandwidth of the filter generated by the Communications
Blockset Gaussian Filter block.

The Group delay parameter is the number of symbol periods between
the start of the filter’s response and the peak of the filter’s response.
The group delay and N determine the length of the filter’s impulse
response, which is 2 * N * Group delay + 1.

The Filter coefficient normalization parameter indicates how the
block scales the set of filter coefficients:

• Sum of coefficients means that the sum of the coefficients equals
1.
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• Filter energy means that the sum of the squares of the coefficients
equals 1.

• Peak amplitude means that the maximum coefficient equals 1.

After the block normalizes the set of filter coefficients as above, it
multiplies all coefficients by the Linear amplitude filter gain
parameter.

Input and Output Signals

The input signal must be a scalar or a frame-based column vector. Set
the Input sampling mode parameter according to whether the input
is sample-based or frame-based. double, single, and fixed-point data
types are supported.

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block
designs, select Export filter coefficients to workspace. Then set
the Coefficient variable name parameter to the name of a variable
that you want the block to create in the MATLAB workspace. Running
the simulation causes the block to create the variable, overwriting any
previous contents in case the variable already exists.
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Dialog
Box

Input samples per symbol
A positive integer representing the number of samples per symbol
in the input signal.

BT product
The product of the filter’s 3-dB bandwidth and the input signal’s
symbol period

Group delay
A positive integer that represents the number of symbol periods
between the start of the filter response and its peak.

Input sampling mode
The type of input signal: Frame-based or Sample-based.

Filter coefficient normalization
The block scales the set of filter coefficients so that this quantity
equals 1. Choices are Sum of coefficients, Filter energy,
and Peak amplitude.
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Linear amplitude filter gain
A positive scalar used to scale the filter coefficients after the
block uses the normalization specified in the Filter coefficient
normalization parameter.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the
MATLAB workspace that contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace.
This field appears only if Export filter coefficients to
workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter
Visualization Tool, fvtool, to analyze the Gaussian filter
whenever you apply any changes to the block’s parameters. If you
launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a
new fvtool in order to see the new filter characteristics. Also
note that if you have launched fvtool, then it will remain open
even after the model is closed.

See Also Raised Cosine Receive Filter, firgauss

References [1] 3GPP TS 05.04 V8.4.0 — 3rd Generation Partnership Project;
Technical Specification Group GSM/EDGE Radio Access Network;
Digital cellular telecommunications system (Phase 2+); Modulation
(Release 1999)
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Purpose Generate Gaussian distributed noise with given mean and variance
values

Library Noise Generators sublibrary of Comm Sources

Description The Gaussian Noise Generator block generates discrete-time white
Gaussian noise. You must specify the Initial seed vector in the
simulation.

The Mean Value and the Variance can be either scalars or vectors.
If either of these is a scalar, then the block applies the same value to
each element of a sample-based output or each column of a frame-based
output. Individual elements or columns, respectively, are uncorrelated
with each other.

When the Variance is a vector, its length must be the same as that
of the Initial seed vector. In this case, the covariance matrix is a
diagonal matrix whose diagonal elements come from the Variance
vector. Since the off-diagonal elements are zero, the output Gaussian
random variables are uncorrelated.

When the Variance is a square matrix, it represents the covariance
matrix. Its off-diagonal elements are the correlations between pairs of
output Gaussian random variables. In this case, the Variance matrix
must be positive definite, and it must be N-by-N, where N is the length
of the Initial seed.

The probability density function of n-dimensional Gaussian noise is

f x K x K xn T( ) ( ) det exp ( ) ( ) /
/

= ( ) − − −( )− −2 2
1 2 1π µ µ

where x is a length-n vector, K is the n-by-n covariance matrix, µ is the
mean value vector, and the superscript T indicates matrix transpose.

Initial Seed

The Initial seed parameter initializes the random number generator
that the Gaussian Noise Generator block uses to add noise to the input
signal. For best results, the Initial seed should be a prime number
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greater than 30. Also, if there are other blocks in a model that have
an Initial seed parameter, you should choose different initial seeds
for all such blocks.

You can choose seeds for the Gaussian Noise Generator block using
the Communications Blockset’srandseed function. At the MATLAB
prompt, enter

randseed

This returns a random prime number greater than 30. Entering
randseed again produces a different prime number. If you supply an
integer argument, randseed always returns the same prime for that
integer. For example, randseed(5) always returns the same answer.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

If the Initial seed parameter is a vector, then its length becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. In this case, the shape (row or column)
of the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal. If the Initial seed parameter is a scalar
but either the Mean value or Variance parameter is a vector, then the
vector length determines the output attributes mentioned above.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Mean value
The mean value of the random variable output.

Variance
The covariance among the output random variables.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.
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Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

See Also Random Source (Signal Processing Blockset), AWGN Channel, rand
(built-in MATLAB function), randseed
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Purpose Restore ordering of symbols in input vector

Library Block sublibrary of Interleaving

Description The General Block Deinterleaver block rearranges the elements of its
input vector without repeating or omitting any elements. The input
can be real or complex. If the input contains N elements, then the
Elements parameter is a vector of length N that indicates the indices,
in order, of the output elements that came from the input vector. That
is, for each integer k between 1 and N,

Output(Elements(k)) = Input(k)

The Elements parameter must contain unique integers between 1
and N.

If the input is frame-based, then both it and the Elements parameter
must be column vectors.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

To use this block as an inverse of theGeneral Block Interleaver block,
use the same Elements parameter in both blocks. In that case, the
two blocks are inverses in the sense that applying the General Block
Interleaver block followed by the General Block Deinterleaver block
leaves data unchanged.

Dialog
Box
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Elements
A vector of length N that lists the indices of the output elements
that came from the input vector.

Examples This example reverses the operation in the example on the General
Block Interleaver block reference page. If Elements is [4,1,3,2] and
the input to the General Block Deinterleaver block is [1;40;59;32],
then the output of the General Block Deinterleaver block is
[40;32;59;1].

Pair Block General Block Interleaver

See Also perms (MATLAB function)
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Purpose Reorder symbols in input vector

Library Block sublibrary of Interleaving

Description The General Block Interleaver block rearranges the elements of its
input vector without repeating or omitting any elements. The input can
be real or complex. If the input contains N elements, then the Elements
parameter is a vector of length N that indicates the indices, in order, of
the input elements that form the length-N output vector; that is,

Output(k) = Input(Elements(k))

for each integer k between 1 and N. The contents of Elements must be
integers between 1 and N, and must have no repetitions.

If the input is frame-based, then both it and the Elements parameter
must be column vectors.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box

Elements
A vector of length N that lists the indices of the input elements
that form the output vector.
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Examples If Elements is [4,1,3,2] and the input vector is [40;32;59;1], then
the output vector is [1;40;59;32]. Notice that all of these vectors
have the same length and that the vector Elements is a permutation
of the vector [1:4].

Pair Block General Block Deinterleaver

See Also perms (MATLAB function)
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Purpose Generate CRC bits according to generator polynomial and append to
input data frames

Library CRC sublibrary of Error Correction and Detection

Description The General CRC Generator block generates cyclic redundancy code
(CRC) bits for each input data frame and appends them to the frame.
You specify the generator polynomial for the CRC algorithm using the
Generator polynomial parameter. This block is general in the sense
that the degree of the polynomial does not need to be a power of two.
You represent the polynomial in one of these ways:

• As a binary row vector containing the coefficients in descending
order of powers. For example, [1 1 0 1] represents the polynomial
x3 + x2 + 1.

• As an integer row vector containing the powers of nonzero terms
in the polynomial, in descending order. For example, [3 2 0]
represents the polynomial x3 + x2 + 1.

You specify the initial state of the internal shift register by the Initial
states parameter. The Initial states parameter is either a scalar
or a binary row vector of length equal to the degree of the generator
polynomial. A scalar value is expanded to a row vector of length equal
to the degree of the generator polynomial. For example, the default
initial state of [0] is expanded to a row vector of all zeros.

You specify the number of checksums that the block calculates for
each input frame by the Checksums per frame parameter. The
Checksums per frame value must evenly divide the size of the input
frame. If the value of Checksums per frame is k, the block does the
following:

1 Divides each input frame into k subframes of equal size

2 Prefixes the Initial states vector to each of the k subframes

3 Applies the CRC algorithm to each augmented subframe
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4 Appends the resulting checksums at the end of each subframe

5 Outputs concatenated subframes

If the size of the input frame is m and the degree of the generator
polynomial is r, the output frame has size m + k * r.

This block supports double and boolean data types. The output data
type is inherited from the input.

Example

Suppose the size of the input frame is 10, the degree of the generator
polynomial is 3, Initial states is [0], and Checksums per frame is
2. The block divides each input frame into two subframes of size 5 and
appends a checksum of size 3 to each subframe, as shown below. The
initial states are not shown in this example, because an initial state of
[0] does not affect the output of the CRC algorithm. The output frame
then has size 5 + 3 + 5 + 3 = 16.
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Signal Attributes

The General CRC Generator block has one input port and one output
port. Both ports allow only frame-based binary column vectors.

Dialog
Box

Generator polynomial
A binary or integer row vector specifying the generator
polynomial, in descending order of powers.

Initial states
Binary scalar or a binary row vector of length equal to the degree
of the generator polynomial, specifying the initial state of the
internal shift register.

Checksums per frame
Positive integer specifying the number of checksums the block
calculates for each input frame.

Algorithm For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.
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References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block General CRC Syndrome Detector

See Also CRC-N Generator, CRC-N Syndrome Detector
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Purpose Detect errors in input data frames according to generator polynomial

Library CRC sublibrary of Error Correction and Detection

Description The General CRC Syndrome Detector block computes checksums for its
entire input frame. The block’s second output is a vector whose size is
the number of checksums, and whose entries are 0 if the checksum
computation yields a zero value, and 1 otherwise. The block’s first
output is the set of message words with the checksums removed.

The block’s parameter settings should agree with those in the General
CRC Generator block.

You specify the number of checksums the block calculates for each
frame by the Checksums per frame parameter. If the Checksums
per frame value is k, the size of the input frame is n, and the degree of
the generator polynomial is r, then k must divide n - k*r, which is the
size of the message word.

This block supports double and boolean data types. The output data
type is inherited from the input.

Example

Suppose the received codeword has size 16, the generator polynomial
has degree 3, Initial states is [0], and Checksums per frame is
2. The block computes the two checksums of size 3, one from the first
half of the received codeword, and the other from the second half of the
received codeword, as shown in the following figure. The initial states
are not shown in this example, because an initial state of [0] does not
affect the output of the CRC algorithm. The block concatenates the two
halves of the message word as a single vector of size 10 and outputs this
vector through the first output port. The block outputs a 2-by-1 binary
frame vector whose entries depend on whether the computed checksums
are zero. The following figure shows an example in which the first
checksum is nonzero and the second checksum is zero. This indicates
that an error occurred in transmitting the first half of the codeword.
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Signal Attributes

The General CRC Syndrome Detector block has one input port and two
output ports. All ports allow frame-based binary column vectors only.
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Dialog
Box

Generator polynomial
A binary or integer row vector specifying the generator
polynomial, in descending order of powers.

Initial states
A binary scalar or a binary row vector of length equal to the
degree of the generator polynomial, specifying the initial state of
the internal shift register.

Checksums per frame
A positive integer specifying the number of checksums the block
calculates for each input frame.

Algorithm For a description of the CRC algorithm as implemented by this block,
see “Cyclic Redundancy Check Coding” in Using the Communications
Blockset.

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J., Prentice-Hall, 1988.
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[2] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

Pair Block General CRC Generator

See Also CRC-N Generator, CRC-N Syndrome Detector
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General Multiplexed Deinterleaver

Purpose Restore ordering of symbols using specified-delay shift registers

Library Convolutional sublibrary of Interleaving

Description The General Multiplexed Deinterleaver block restores the original
ordering of a sequence that was interleaved using theGeneral
Multiplexed Interleaver block.

In typical usage, the parameters in the two blocks have the same
values. As a result, the Interleaver delay parameter, V, specifies the
delays for each shift register in the corresponding interleaver, so that
the delays of the deinterleaver’s shift registers are actually max(V)-V.

The input can be either a scalar or a frame-based column vector. It
can be real or complex. The input and output signals share the same
sample time.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box
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Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift
register of the corresponding interleaver. The length of this vector
is the number of shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block General Multiplexed Interleaver

See Also Convolutional Deinterleaver, Helical Deinterleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.
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Purpose Permute input symbols using set of shift registers with specified delays

Library Convolutional sublibrary of Interleaving

Description The General Multiplexed Interleaver block permutes the symbols in
the input signal. Internally, it uses a set of shift registers, each with
its own delay value.

The input can be either a scalar or a frame-based column vector. It
can be real or complex. The input and output signals share the same
sample time.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Interleaver delay parameter is a column vector whose entries
indicate how many symbols can fit into each shift register. The length of
the vector is the number of shift registers. (In sample-based mode, it
can also be a row vector.)

The Initial conditions parameter indicates the values that fill each
shift register at the beginning of the simulation. If Initial conditions
is a scalar, then its value fills all shift registers; if Initial conditions is
a column vector, then each entry fills the corresponding shift register.
(In sample-based mode, Initial conditions can also be a row vector.) If
a given shift register has zero delay, then the value of the corresponding
entry in the Initial conditions vector is unimportant.
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Dialog
Box

Interleaver delay (samples)
A vector that lists the number of symbols that fit in each shift
register. The length of this vector is the number of shift registers.

Initial conditions
The values that fill each shift register when the simulation begins.

Pair Block General Multiplexed Deinterleaver

See Also Convolutional Interleaver, Helical Interleaver

References [1] Heegard, Chris and Stephen B. Wicker. Turbo Coding. Boston:
Kluwer Academic Publishers, 1999.
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General QAM Demodulator Baseband

Purpose Demodulate QAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The General QAM Demodulator Baseband block demodulates a signal
that was modulated using quadrature amplitude modulation. The input
is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The Signal
constellation parameter defines the constellation by listing its points
in a vector of complex numbers. The block maps the mth point in the
Signal constellation vector to the integer m-1.

The input can be either a scalar or a frame-based column vector and
must be of data types single or double.

Dialog
Box

Signal constellation
A real or complex vector that lists the constellation points.

Output data type
This block can output the data types int8, uint8, int16, uint16,
int32, uint32, single, and double.

Pair Block General QAM Modulator Baseband

See Also Rectangular QAM Demodulator Baseband
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Purpose Modulate using quadrature amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The General QAM Modulator Baseband block modulates using
quadrature amplitude modulation. The output is a baseband
representation of the modulated signal.

The Signal constellation parameter defines the constellation by
listing its points in a length-M vector of complex numbers. The input
signal values must be integers between 0 and M-1. The block maps an
input integer m to the (m+1)st value in the Signal constellation vector.

The input can be either a scalar or a frame-based column vector. For
integer inputs, the block can accept the data types int8, uint8, int16,
uint16, int32, uint32, single, and double. For bit inputs, the block
can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

Dialog
Box

Signal constellation
A real or complex vector that lists the constellation points.

Output Data type
The output data type can be either single or double.

Pair Block General QAM Demodulator Baseband
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See Also Rectangular QAM Modulator Baseband
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General TCM Decoder

Purpose Decode trellis-coded modulation data, mapped using arbitrary
constellation

Library Trellis-Coded Modulation

Description The General TCM Decoder block uses the Viterbi algorithm to decode a
trellis-coded modulation (TCM) signal that was previously modulated
using an arbitrary signal constellation.

The Trellis structure and Signal constellation parameters in this
block should match those in theGeneral TCM Encoder block, to ensure
proper decoding. In particular, the Signal constellation parameter
must be in set-partitioned order.

Input and Output Signals

The input signal must be a frame-based column vector containing
complex numbers.

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the General TCM Decoder block’s output is a
frame-based binary column vector whose length is k times the vector
length of the input signal.

The input signal must be double or single. The reset port accepts
double or boolean.

Operation Modes

The block has three possible methods for transitioning between
successive frames. The Operation mode parameter controls which
method the block uses. This parameter also affects the range of possible
values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero
at the beginning of the simulation, waits until it accumulates D
symbols, and then uses a sequence of D symbols to compute each of
the traceback paths. D can be any positive integer. At the end of
each frame, the block saves its internal state metric for use with
the next frame.
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If you select the Enable the reset input port check box, the block
displays another input port, labeled Rst. This port receives an
integer scalar signal. Whenever the value at the Rst port is nonzero,
the block resets all state metrics to zero and sets the traceback
memory to zero.

• In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the lowest metric. D must be
less than or equal to the vector length of the input.

• In Terminated mode, the block treats each frame independently.
The traceback path always starts at the all-zeros state. D must be
less than or equal to the vector length of the input. If you know that
each frame of data typically ends at the all-zeros state, then this
mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces
a decoding delay equal to Traceback depth*k bits for a rate k/n
convolutional code. The decoding delay is the number of zeros that
precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Signal constellation
A complex vector that lists the points in the signal constellation
in set-partitioned order.

Traceback depth
The number of trellis branches (equivalently, the number of
symbols) the block uses in the Viterbi algorithm to construct each
traceback path.

Operation mode
The operation mode of the Viterbi decoder. The choices are
Continuous, Truncated, and Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled
Rst. Providing a nonzero value to this port causes the block to
set its internal memory to the initial state before processing the
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input data. This field appears only if you set Operation mode
to Continuous.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Pair Block General TCM Encoder

See Also M-PSK TCM Decoder, Rectangular QAM TCM Decoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.
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Purpose Convolutionally encode binary data and map using arbitrary
constellation

Library Trellis-Coded Modulation

Description The General TCM Encoder block implements trellis-coded modulation
(TCM) by convolutionally encoding the binary input signal and
mapping the result to an arbitrary signal constellation. The points
in the signal constellation are listed in set-partitioned order in the
Signal constellation parameter. This parameter is a complex vector
whose length, M, equals the number of possible output symbols from
the convolutional encoder. (That is, log2M is equal to n for a rate k/n
convolutional code.)

Input and Output Signals

If the convolutional encoder represents a rate k/n code, then the General
TCM Encoder block’s input must be a frame-based binary column vector
whose length is L*k for some positive integer L.

The output from the General TCM Encoder block is a frame-based
complex column vector of length L.

The input signal must be boolean.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in the section “Trellis Description of a Convolutional Encoder”
in the Communications Toolbox documentation. You can use this
parameter field in two ways:

• If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to
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poly2trellis(7,[171 133],171)

• If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is faster because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation,
compared to the usage in the previous bulleted item.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into
subsets called cosets so as to maximize the minimum distance between
pairs of points in each coset.

Note When you set the Signal constellation parameter, you must
ensure that the constellation vector is already in set-partitioned order.
Otherwise, the block might produce unexpected or suboptimal results.

As an example, the diagram below shows one way to devise a
set-partitioned order for the points for an 8-PSK signal constellation.
The figure at the top of the tree is the entire 8-PSK signal constellation,
while the eight figures at the bottom of the tree contain one constellation
point each. Each level of the tree corresponds to a different bit in a
binary sequence (b3,b2,b1), while each branch in a given level of the tree
corresponds to a particular value for that bit. Listing the constellation
points using the sequence at the bottom of the tree leads to the vector

exp(2*pi*j*[0 4 2 6 1 5 3 7]/8)

which is a valid value for the Signal constellation parameter in this
block.
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For other examples of signal constellations in set-partitioned order, see
[1] or the reference pages for theM-PSK TCM Encoder andRectangular
QAM TCM Encoder blocks.

Dialog
Box
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Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

Signal constellation
A complex vector that lists the points in the signal constellation
in set-partitioned order.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

Pair Block General TCM Decoder

See Also M-PSK TCM Encoder, Rectangular QAM TCM Encoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane, and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.
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GMSK Demodulator Baseband

Purpose Demodulate GMSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The GMSK Demodulator Baseband block demodulates a signal that
was modulated using the Gaussian minimum shift keying method. The
input is a baseband representation of the modulated signal.

The BT product, Pulse length, Symbol prehistory, and Phase
offset parameters are as described on the reference page for theGMSK
Modulator Baseband block.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1
zero symbols.

• If the input signal is frame-based, then the delay consists of D zero
symbols.

Inputs and Outputs

The input can be either a scalar or a frame-based column vector and
must be of type single or double. If the Output type parameter is set
to Integer, then the block produces values of 1 and -1. If the Output
type parameter is set to Bit, then the block produces values of 0 and 1.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

Output type
Determines whether the output consists of bipolar or binary
values.

BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.
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Symbol prehistory
The data symbols used by the modulator before the start of the
simulation.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or
double.

Pair Block GMSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.
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Purpose Modulate using Gaussian minimum shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The GMSK Modulator Baseband block modulates using the Gaussian
minimum shift keying method. The output is a baseband representation
of the modulated signal.

The BT product parameter represents bandwidth multiplied by
time. This parameter is a nonnegative scalar. It is used to reduce the
bandwidth at the expense of increased intersymbol interference. The
Pulse length parameter measures the length of the Gaussian pulse
shape, in symbol intervals. For an explanation of the pulse shape, see
the work by Anderson, Aulin, and Sundberg among the references listed
below. The frequency pulse shape is defined by the following equations.
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The Symbol prehistory parameter is a scalar or vector that specifies
the data symbols used before the start of the simulation, in reverse
chronological order. If it is a vector, then its length must be one less
than the Pulse length parameter.

In this block, a symbol of 1 causes a phase shift of π/2 radians. The
Phase offset parameter is the initial phase of the output waveform,
measured in radians.

Input Attributes

The input can be either a scalar or a frame-based column vector. If the
Input type parameter is set to Integer, then the block accepts values
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of 1 and -1. If the Input type parameter is set to Bit, then the block
accepts values of 0 and 1.

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.

Dialog
Box

Input type
Indicates whether the input consists of bipolar or binary values.
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BT product
The product of bandwidth and time.

Pulse length (symbol intervals)
The length of the frequency pulse shape.

Symbol prehistory
The data symbols used before the start of the simulation, in
reverse chronological order.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or bit in the input.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

Pair Block GMSK Demodulator Baseband

See Also CPM Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg. Digital
Phase Modulation. New York: Plenum Press, 1986.

2-238



Gold Sequence Generator

Purpose Generate Gold sequence from set of sequences

Library Sequence Generators sublibrary of Comm Sources

Description The Gold Sequence Generator block generates a Gold sequence. Gold
sequences form a large class of sequences that have good periodic
cross-correlation properties.

The Gold sequences are defined using a specified pair of sequences
u and v, of period N = 2n - 1, called a preferred pair, as defined in
“Preferred Pairs of Sequences” on page 2-242 below. The set G(u, v) of
Gold sequences is defined by

G u v u v u v u Tv u T v u T vN( , ) { , , , , ,..., }= ⊕ ⊕ ⊕ ⊕ −2 1

where T represents the operator that shifts vectors cyclically to the

left by one place, and ⊕ represents addition modulo 2. Note that
G(u,v) contains N + 2 sequences of period N. The Gold Sequence
Generator block outputs one of these sequences according to the block’s
parameters.

Gold sequences have the property that the cross-correlation between
any two, or between shifted versions of them, takes on one of three
values: -t(n), -1, or t(n) - 2, where

t n
n

n

n

n
( )

( ) /

( ) /
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+

+

⎧
⎨
⎪
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+

1 2

1 2

1 2

2 2

 even

 odd

The Gold Sequence Generator block uses two PN Sequence Generator
blocks to generate the preferred pair of sequences, and then XORs these
sequences to produce the output sequence, as shown in the following
diagram.
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You can specify the preferred pair by the Preferred polynomial [1]
and Preferred polynomial [2] parameters in the dialog for the Gold
Sequence Generator block. These polynomials, both of which must have
degree n, describe the shift registers that the PN Sequence Generator
blocks use to generate their output. For more details on how these
sequences are generated, see the reference page for the PN Sequence
Generator block. You can specify the preferred polynomials using either
of the following formats:

• A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, the vectors [5 2 0] and [1 0 0 1 0 1] both represent
the polynomial z5 + z2 + 1.

The following table provides a short list of preferred pairs.

n N
Preferred
Polynomial[1]

Preferred
Polynomial[2]

5 31 [5 2 0] [5 4 3 2 0]

6 63 [6 1 0] [6 5 2 1 0]

7 127 [7 3 0] [7 3 2 1 0]
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n N
Preferred
Polynomial[1]

Preferred
Polynomial[2]

9 511 [9 4 0] [9 6 4 3 0]

10 1023 [10 3 0] [10 8 3 2 0]

11 2047 [11 2 0] [11 8 5 2 0]

The Initial states[1] and Initial states[2] parameters are vectors
specifying the initial values of the registers corresponding to Preferred
polynomial [1] and Preferred polynomial [2], respectively. These
parameters must satisfy these criteria:

• All elements of the Initial states[1] and Initial states[2] vectors
must be binary numbers.

• The length of the Initial states[1] vector must equal the degree of the
Preferred polynomial[1], and the length of the Initial states[2]
vector must equal the degree of the Preferred polynomial[2].

Note At least one element of the Initial states vectors must be
nonzero in order for the block to generate a nonzero sequence. That
is, the initial state of at least one of the registers must be nonzero.

The Sequence index parameter specifies which sequence in the set
G(u, v) of Gold sequences the block outputs. The range of Sequence
index is [-2, -1, 0, 1, 2, ..., 2n–2]. The correspondence between
Sequence index and the output sequence is given in the following
table.

Sequence Index Output Sequence

-2 u

-1 v

0 u v⊕
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Sequence Index Output Sequence

1 u Tv⊕

2
u T v⊕ 2

... ...

2n-2
u T v

n

⊕ −2 2

You can shift the starting point of the Gold sequence with the Shift
parameter, which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift
register to the initial state by selecting the Reset on nonzero input
check box. This creates an input port for the external signal in the Gold
Sequence Generator block. The way the block resets the internal shift
register depends on whether its output signal and the reset signal are
sample-based or frame-based. The following example demonstrates
the possible alternatives. See “Example: Resetting a Signal” on page
2-435 for an example.

Preferred Pairs of Sequences

The requirements for a pair of sequences u, v of period N = 2n–1 to be a
preferred pair are as follows:

• n is not divisible by 4

• v = u[q], where

- q is odd

- q = 2k+1 or q = 22k–2k+1

- v is obtained by sampling every qth symbol of u

• gcd( , )
mod
mod

n k
n
n

=
≡
≡

⎧
⎨
⎩

1 1 2
2 2 4
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.
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Preferred polynomial[1]
Vector specifying the polynomial for the first sequence of the
preferred pair.

Initial states[1]
Vector of initial states of the shift register for the first sequence of
the preferred pair.

Preferred polynomial[2]
Vector specifying the polynomial for the second sequence of the
preferred pair.

Initial states[2]
Vector of initial states of the shift register for the second sequence
of the preferred pair.

Sequence index
Integer specifying the index of the output sequence from the set
of sequences.

Shift
Integer scalar that determines the offset of the Gold sequence
from the initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the
internal shift registers to the original values of the Initial states
parameter

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.
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See Also Kasami Sequence Generator, PN Sequence Generator

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[2] Gold, R., "Maximal Recursive Sequences with 3-valued Recursive
Cross-Correlation Functions," IEEE Trans. Infor. Theory, Jan., 1968,
pp. 154-156.

[3] Gold, R., "Optimal Binary Sequences for Spread Spectrum
Multiplexing, IEEE Trans. Infor. Theory, Oct., 1967, pp. 619-621.

[4] Sarwate, D.V., and M.B. Pursley, "Crosscorrelation Properties of
Pseudorandom and Related Sequences," Proc. IEEE, Vol. 68, No. 5,
May, 1980, pp. 583-619.
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Purpose Generate Hadamard code from orthogonal set of codes

Library Sequence Generators sublibrary of Comm Sources

Description The Hadamard Code Generator block generates a Hadamard code
from a Hadamard matrix, whose rows form an orthogonal set of codes.
Orthogonal codes can be used for spreading in communication systems
in which the receiver is perfectly synchronized with the transmitter.
In these systems, the despreading operation is ideal, as the codes are
decorrelated completely.

The Hadamard codes are the individual rows of a Hadamard matrix.
Hadamard matrices are square matrices whose entries are +1 or -1, and
whose rows and columns are mutually orthogonal. If N is a nonnegative
power of 2, the N-by-N Hadamard matrix, denoted HN, is defined
recursively as follows.

H

H
H H
H HN

N N

N N

1

2

1= [ ]

=
−

⎡

⎣
⎢

⎤

⎦
⎥

The N-by-N Hadamard matrix has the property that

HNHN
T = NIN

where IN is the N-by-N identity matrix.

The Hadamard Code Generator block outputs a row of HN. The output
is bipolar. You specify the length of the code, N, by the Code length
parameter. The Code length must be a power of 2. You specify the
index of the row of the Hadamard matrix, which is an integer in the
range [0, 1, ... , N-1], by the Code index parameter.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Code length
A positive integer that is a power of two specifying the length
of the Hadamard code.

Code index
An integer between 0 and N-1, where N is the Code length,
specifying a row of the Hadamard matrix.

Sample time
A positive real scalar specifying the sample time of the output
signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
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Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

See Also OVSF Code Generator, Walsh Code Generator
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Purpose Decode Hamming code to recover binary vector data

Library Block sublibrary of Channel Coding

Description The Hamming Decoder block recovers a binary message vector from a
binary Hamming codeword vector. For proper decoding, the parameter
values in this block should match those in the correspondingHamming
Encoder block.

If the Hamming code has message length K and codeword length N,
then N must have the form 2M-1 for some integer M greater than or
equal to 3. Also, K must equal N-M.

The input must contain exactly N elements. If it is frame-based, then it
must be a column vector. The output is a vector of length K.

The coding scheme uses elements of the finite field GF(2M). You can
either specify the primitive polynomial that the algorithm should use,
or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the
first and second dialog parameters, respectively. The algorithm uses
gfprimdf(M) as the primitive polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter
and a binary vector as the second parameter. The vector represents
the primitive polynomial by listing its coefficients in order of
ascending exponents. You can create primitive polynomials using the
gfprimfd function in the Communications Toolbox.

This block supports double and boolean data types.
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Dialog
Box

Codeword length N
The codeword length N, which is also the input vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the output vector length;
or a binary vector that represents a primitive polynomial for
GF(2M).

Pair Block Hamming Encoder

See Also hammgen (Communications Toolbox)
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Purpose Create Hamming code from binary vector data

Library Block sublibrary of Channel Coding

Description The Hamming Encoder block creates a Hamming code with message
length K and codeword length N. The number N must have the form
2M-1, where M is an integer greater than or equal to 3. Then K equals
N-M.

The input must contain exactly K elements. If it is frame-based, then it
must be a column vector. The output is a vector of length N.

The coding scheme uses elements of the finite field GF(2M). You can
either specify the primitive polynomial that the algorithm should use,
or you can rely on the default setting:

• To use the default primitive polynomial, simply enter N and K as the
first and second dialog parameters, respectively. The algorithm uses
gfprimdf(M) as the primitive polynomial for GF(2M).

• To specify the primitive polynomial, enter N as the first parameter
and a binary vector as the second parameter. The vector represents
the primitive polynomial by listing its coefficients in order of
ascending exponents. You can create primitive polynomials using the
gfprimfd function in the Communications Toolbox.

This block supports double and boolean data types.
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Dialog
Box

Codeword length N
The codeword length, which is also the output vector length.

Message length K, or M-degree primitive polynomial
Either the message length, which is also the input vector length;
or a binary vector that represents a primitive polynomial for
GF(2M).

Pair Block Hamming Decoder

See Also hammgen (Communications Toolbox)
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Purpose Restore ordering of symbols permuted by helical interleaver

Library Convolutional sublibrary of Interleaving

Description The Helical Deinterleaver block permutes the symbols in the input
signal by placing them in an array row by row and then selecting groups
in a helical fashion to send to the output port.

The block uses the array internally for its computations. If C is the
Number of columns in helical array parameter, then the array has
C columns and unlimited rows. If N is the Group size parameter, then
the block accepts an input of length C*N at each time step and inserts
them into the next N rows of the array. The block also places the Initial
condition parameter into certain positions in the top few rows of the
array (not only to accommodate the helical pattern but also to preserve
the vector indices of symbols that pass through the Helical Interleaver
and Helical Deinterleaver blocks in turn).

The output consists of consecutive groups of N symbols. Counting from
the beginning of the simulation, the block selects the kth output group
in the array from column k mod C. The selection is helical because of
the reduction modulo C and because the first symbol in the kth group is
in row 1+(k-1)*s, where s is the Helical array step size parameter.

The number of elements of the input vector must be C times N. If the
input is frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Delay of Interleaver-Deinterleaver Pair

After processing a message with the Helical Interleaver block and the
Helical Deinterleaver block, the deinterleaved data lags the original
message by

CN
s C

N
( )−⎡

⎢⎢
⎤
⎥⎥

1
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samples. Before this delay elapses, the deinterleaver output is either
the Initial condition parameter in the Helical Deinterleaver block or
the Initial condition parameter in the Helical Interleaver block.

If your model incurs an additional delay between the interleaver
output and the deinterleaver input, then the restored sequence lags the
original sequence by the sum of the additional delay and the amount
in the formula above. For proper synchronization, the delay between
the interleaver and deinterleaver must be m*C*N for some nonnegative
integer m. You can use the Delay block in the Signal Processing
Blockset to adjust delays manually, if necessary.

Dialog
Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of symbols. The input width is C times
N.
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Helical array step size
The number of rows of separation between consecutive output
groups as the block selects them from their respective columns of
the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Pair Block Helical Interleaver

See Also General Multiplexed Deinterleaver

References [1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic
Block Codes." U. S. Patent 4559625, Dec. 17, 1985.
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Purpose Permute input symbols using helical array

Library Convolutional sublibrary of Interleaving

Description The Helical Interleaver block permutes the symbols in the input signal
by placing them in an array in a helical fashion and then sending rows
of the array to the output port.

The block uses the array internally for its computations. If C is the
Number of columns in helical array parameter, then the array has
C columns and unlimited rows. If N is the Group size parameter,
then the block accepts an input of length C*N at each time step and
partitions the input into consecutive groups of N symbols. Counting
from the beginning of the simulation, the block places the kth group in
the array along column k mod C. The placement is helical because of
the reduction modulo C and because the first symbol in the kth group is
in row 1+(k-1)*s, where s is the Helical array step size parameter.
Positions in the array that do not contain input symbols have default
contents specified by the Initial condition parameter.

The block sends C*N symbols from the array to the output port by
reading the next N rows sequentially. At a given time step, the output
symbols might be the Initial condition parameter value, symbols
from that time step’s input vector, or symbols left in the array from a
previous time step.

The number of elements of the input vector must be C times N. If the
input is frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.
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Dialog
Box

Number of columns in helical array
The number of columns, C, in the helical array.

Group size
The size, N, of each group of input symbols. The input width is
C times N.

Helical array step size
The number of rows of separation between consecutive input
groups in their respective columns of the helical array.

Initial condition
A scalar that fills the array before the first input is placed.

Examples Suppose that C = 3, N = 2, the Helical array step size parameter is 1,
and the Initial condition parameter is -1. After receiving inputs of
[1:6]', [7:12]', and [13:18]', the block’s internal array looks like the
schematic below. The coloring of the inputs and the array indicate how
the input symbols are placed within the array. The outputs at the first
three time steps are [1; -1; -1; 2; 3; -1], [7; 4; 5; 8; 9; 6],
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and [13; 10; 11; 14; 15; 12]. (The outputs are not color-coded in
the schematic.)
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Pair Block Helical Deinterleaver

See Also General Multiplexed Interleaver

References [1] Berlekamp, E. R. and P. Tong. "Improved Interleavers for Algebraic
Block Codes." U. S. Patent 4559625, Dec. 17, 1985.
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Purpose Shape input signal using ideal rectangular pulses

Library Comm Filters

Description The Ideal Rectangular Pulse Filter block upsamples and shapes the
input signal using rectangular pulses. The block replicates each input
sample N times, where N is the Pulse length parameter. After
replicating input samples, the block can also normalize the output
signal and/or apply a linear amplitude gain.

If the Pulse delay parameter is nonzero, then the block outputs that
number of zeros at the beginning of the simulation, before starting to
replicate any of the input values.

Inputs and Outputs

The input can be either a scalar or a frame-based column vector.
double, single, and fixed-point data types are supported.

• If the input is sample-based, then the output sample time is 1/N
times the input sample time. The output dimensions match the input
dimensions. You must set the Input sampling mode parameter to
Sample-based.

• If the input is a frame-based k-by-1 matrix, then the output is a
frame-based k*N-by-1 matrix. The output frame period matches
the input frame period. You must set the Input sampling mode
parameter to Frame-based.

The vector size (in frame-based mode), the pulse length, and the pulse
delay are mutually independent. They do not need to satisfy any
conditions with respect to each other.

Normalization Methods

You determine the block’s normalization behavior using the Normalize
output signal and Linear amplitude gain parameters.
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• If you clear the Normalize output signal check box, then the block
multiplies the set of replicated values by the Linear amplitude
gain parameter. This parameter must be a scalar.

• If you select Normalize output signal, then the Normalization
method parameter appears. The block scales the set of replicated
values so that one of these conditions is true:

- The sum of the samples in each pulse equals the original input
value that the block replicated.

- The energy in each pulse equals the energy of the original input
value that the block replicated. That is, the sum of the squared
samples in each pulse equals the square of the input value.

After the block applies the scaling specified in the Normalization
method parameter, it multiplies the scaled signal by the constant
scalar value specified in the Linear amplitude gain parameter.

Dialog
Box
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Pulse length
The number of samples in each output pulse; that is, the number
of times the block replicates each input value when creating the
output signal.

Pulse delay
The number of zeros that appear in the output at the beginning of
the simulation, before the block replicates any input values.

Input sampling mode
The type of input signal: Frame-based or Sample-based.

Normalize output signal
If you select this, then the block scales the set of replicated values
before applying the linear amplitude gain.

Normalization method
The quantity that the block considers when scaling the set of
replicated values. Choices are Sum of samples and Energy per
pulse. This field appears only if you select Normalize output
signal.

Linear amplitude gain
A positive scalar used to scale the output signal.

Examples If Pulse length is 4 and Pulse delay is the scalar 3, then the table
below shows how the block treats the beginning of a ramp (1, 2, 3,...) in
several situations. (The values shown in the table do not reflect vector
sizes but merely indicate numerical values.)

Normalization
Method, If Any

Linear Amplitude
Gain

First Several
Output Values

None (Normalize
output signal
cleared)

1 0, 0, 0, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3,...

None (Normalize
output signal
cleared)

10 0, 0, 0, 10, 10, 10, 10,
20, 20, 20, 20, 30, 30,
30, 30,...
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Normalization
Method, If Any

Linear Amplitude
Gain

First Several
Output Values

Sum of samples 1 0, 0, 0, 0.25, 0.25,
0.25, 0.25, 0.5, 0.5,
0.5, 0.5, 0.75, 0.75,
0.75, 0.75,..., where
0.25*4=1

Sum of samples 10 0, 0, 0, 2.5, 2.5, 2.5,
2.5, 5, 5, 5, 5, 7.5,
7.5, 7.5, 7.5,...

Energy per pulse 1 0, 0, 0, 0.5, 0.5,
0.5, 0.5, 1.0, 1.0,
1.0, 1.0, 1.5, 1.5,
1.5, 1.5,..., where
(0.5)^2*4=1^2

Energy per pulse 10 0, 0, 0, 5, 5, 5, 5, 10,
10, 10, 10, 15, 15, 15,
15,...

See Also Upsample, Integrate and Dump
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Purpose Distribute input elements in output vector

Library Sequence Operations

Description The Insert Zero block constructs an output vector by inserting zeros
among the elements of the input vector. The input can be real or
complex. The block determines where to place the zeros by using the
Insert zero vector parameter. The Insert zero vector parameter is a
binary vector whose elements are arranged so that:

• Each 1 indicates that the block should place the next element of the
input in the output vector

• Each 0 indicates that the block should place a 0 in the output vector

If the input signal is sample-based, then the input vector length must
equal the number of 1s in the Insert zero vector parameter.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

To implement punctured coding using the Puncture and Insert Zero
blocks, you should use the same vector for the Insert zero vector
parameter in this block and for the Puncture vector parameter in
the Puncture block.

Frame-Based Processing

If the input signal is frame-based, then both it and the Insert zero
vector parameter must be column vectors. The number of 1s in the
Insert zero vector parameter must divide the input vector length. If
the input vector length is greater than the number of 1s in the Insert
zero vector parameter, then the block repeats the insertion pattern
until it has placed all input elements in the output vector.
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Dialog
Box

Insert zero vector
A binary vector whose pattern of 0s and 1s indicates where the
block should place either 0s or input vector elements, respectively,
in the output vector.

Examples If the Insert zero vector parameter is the six-element vector
[1,0,1,1,1,0], then the block inserts zeros after the first and last
elements of each consecutive grouping of four input elements. It
considers groups of four elements because the Insert zero vector
parameter has four 1s.

The diagram below depicts the block’s operation using this Insert zero
vector parameter. Notice that the insertion pattern applies twice.

2-264



Insert Zero

�����������7���

������������$���8
�	
��=�����

,��
	��$�2 ,��
	��$�2

��������$��%���	
��0�����

 �# & 2 � � < #" ##�!

"�!""" �# & 2 � � < #" ##

���
�	��
��

Compare this example with that on the reference page for the Puncture
block.

See Also Puncture
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Purpose Create Reed-Solomon code from integer vector data

Library Block sublibrary of Channel Coding

Description The Integer-Input RS Encoder block creates a Reed-Solomon code with
message length K and codeword length N. You specify both N and K
directly in the block dialog. The symbols for the code are integers
between 0 and 2M-1, which represent elements of the finite field GF(2M).
Restrictions on M and N are described in “Restrictions on M and the
Codeword Length N” on page 2-267 below. The difference N - K must
be an even integer.

The input and output are integer-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of K. The block can
accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see the section “Integer Format (Reed-Solomon
Only)” in Using the Communications Blockset.

The default value of M is the smallest integer that is greater than or
equal to log2(N+1), that is, ceil(log2(N+1)). You can change the value
of M from the default by specifying the primitive polynomial for GF(2M),
as described in “Specifying the Primitive Polynomial” on page 2-266
below. If N is less than 2M-1, the block uses a shortened Reed-Solomon
code.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol
errors (not bit errors) in each codeword.

Specifying the Primitive Polynomial

You can specify the primitive polynomial that defines the finite
field GF(2M), corresponding to the integers that form messages and
codewords. To do so, first select Specify primitive polynomial. Then,
in the Primitive polynomial field, enter a binary row vector that
represents a primitive polynomial over GF(2) of degree M, in descending
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order of powers. For example, to specify the polynomial x3+x+1, enter
the vector [1 0 1 1].

If you do not select Specify primitive polynomial, the
block uses the default primitive polynomial of degree M =
ceil(log2(N+1)). You can display the default polynomial by entering
primpoly(ceil(log2(N+1))) at the MATLAB prompt.

Restrictions on M and the Codeword Length N

The restrictions on the degree M of the primitive polynomial and the
codeword length N are as follows:

• If you do not select Specify primitive polynomial, N must lie in
the range 3 < N < 216–1.

• If you do select Specify primitive polynomial, N must lie in the
range 3 ≤ N < 2M–1 and M must lie in the range 3 ≤ M ≤ 16.

Specifying the Generator Polynomial

You can specify the generator polynomial for the Reed-Solomon code.
To do so, first select Specify generator polynomial. Then, in the
Generator polynomial field, enter an integer row vector whose
entries are between 0 and 2M-1. The vector represents a polynomial,
in descending order of powers, whose coefficients are elements of
GF(2M) represented in integer format. See the section“Integer Format
(Reed-Solomon Only)” for more information about integer format. The
generator polynomial must be equal to a polynomial with a factored form

g(x) = (x+Ab)(x+Ab+1)(x+Ab+2)...(x+Ab+N-K-1)

where A is the primitive element of the Galois field over which the input
message is defined, and b is an integer.

If you do not select Specify generator polynomial, the block uses the
default generator polynomial, corresponding to b=1, for Reed-Solomon
encoding. You can display the default generator polynomial by entering
rsgenpoly(N1,K1), where N1 = 2^M-1 and K1 = K+(N1-N), at the
MATLAB prompt, if you are using the default primitive polynomial. If
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the Specify primitive polynomial box is selected, and you specify
the primitive polynomial specified as poly, the default generator
polynomial is rsgenpoly(N1,K1,poly).

Examples Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a vector of
length 5 whose entries are integers between 0 and 7. A corresponding
codeword is a vector of length 7 whose entries are integers between 0
and 7. The following figure illustrates possible input and output signals
to this block when Codeword length N is set to 7, Message length K
is set to 5, and the default primitive and generator polynomials are used.
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Dialog
Box

Codeword length N
The codeword length.

Message length K
The message length.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.
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Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Pair Block Integer-Output RS Decoder

See Also Binary-Input RS Encoder
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Purpose Decode Reed-Solomon code to recover integer vector data

Library Block sublibrary of Channel Coding

Description The Integer-Output RS Decoder block recovers a message vector
from a Reed-Solomon codeword vector. For proper decoding,
the parameter values in this block should match those in the
correspondingInteger-Input RS Encoder block.

The Reed-Solomon code has message length K and codeword length N.
You specify both N and K directly in the block dialog. The symbols for
the code are integers between 0 and 2M-1, which represent elements
of the finite field GF(2M). Restrictions on M and N are described in
“Restrictions on M and the Codeword Length N” on page 2-267 below.
The difference N - K must be an even integer.

The input and output are integer-valued signals that represent
messages and codewords, respectively. The input must be a frame-based
column vector whose length is an integer multiple of K. The block can
accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. The output is a frame-based column vector whose
length is the same integer multiple of N, and whose data type is
inherited from the input. For more information on representing data
for Reed-Solomon codes, see the section “Integer Format (Reed-Solomon
Only)” in Using the Communications Blockset.

The default value of M is ceil(log2(N+1)), that is, the smallest integer
greater than or equal to log2(N+1). You can change the value of M
from the default by specifying the primitive polynomial for GF(2M), as
described in “Specifying the Primitive Polynomial” on page 2-266 below.
If N is less than 2M-1, the block uses a shortened Reed-Solomon code.

You can also specify the generator polynomial for the Reed-Solomon
code, as described in “Specifying the Generator Polynomial” on page
2-267.

An (N, K) Reed-Solomon code can correct up to floor((N-K)/2) symbol
errors (not bit errors) in each codeword.

2-271



Integer-Output RS Decoder

The second output is the number of errors detected during decoding
of the codeword. A -1 indicates that the block detected more errors
than it could correct using the coding scheme. An (N,K) Reed-Solomon
code can correct up to floor((N-K)/2) symbol errors (not bit errors)
in each codeword. The data type of this output is also inherited from
the input signal.

You can disable the second output by deselecting Output number of
corrected errors. This removes the block’s second output port.

The sample times of the input and output signals are equal.

Dialog
Box
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Codeword length N
The codeword length.

Message length K
The message length.

Specify primitive polynomial
When you select this box, you can specify the primitive polynomial
as a binary row vector.

Primitive polynomial
Binary row vector representing the primitive polynomial in
descending order of powers.

Specify generator polynomial
When you select this box, you can specify the generator polynomial
as an integer row vector.

Generator polynomial
Integer row vector, whose entries are in the range from 0 to 2M-1,
representing the generator polynomial in descending order of
powers.

Output number of corrected errors
When you select this box, the block outputs the number of
corrected errors in each word through a second output port.

Algorithm This block uses the Berlekamp-Massey decoding algorithm. For
information about this algorithm, see the references listed below.

Pair Block Integer-Input RS Encoder

References [1] Wicker, Stephen B., Error Control Systems for Digital
Communication and Storage, Upper Saddle River, N.J., Prentice Hall,
1995.

[2] Berlekamp, Elwyn R., Algebraic Coding Theory, New York,
McGraw-Hill, 1968.
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See Also Binary-Output RS Decoder
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Integer to Bit Converter

Purpose Map vector of integers to vector of bits

Library Utility Blocks

Description The Integer to Bit Converter block maps each integer in the input
vector to a group of bits in the output vector. If M is the Number of
bits per integer parameter, then the input integers must be between 0
and 2M-1. The block maps each integer to a group of M bits, using the
first bit as the most significant bit. As a result, the output vector length
is M times the input vector length.

The input can be either a scalar or a frame-based column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, single, and double.

Dialog
Box

Number of bits per integer
The number of bits the block uses to represent each integer of the
input. This parameter must be an integer between 1 and 31.

Output data type
The output data type can be set to int8, uint8, int16, uint16,
int32, uint32, boolean, single, or double. If this field is set to
Same as input, the output data type will be inherited from the
input signal.
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Examples If the input is [7; 13] and the Number of bits per integer parameter
is 4, then the output is [0; 1; 1; 1; 1; 1; 0; 1]. The first group of four
bits (0, 1, 1, 1) represents 7 and the second group of four bits (1, 1, 0,
1) represents 13. Notice that the output length is four times the input
length.

Pair Block Bit to Integer Converter

2-276



Integrate and Dump

Purpose Integrate discrete-time signal, resetting to zero periodically

Library Comm Filters

Description The Integrate and Dump block creates a cumulative sum of the
discrete-time input signal, while resetting the sum to zero according to
a fixed schedule. When the simulation begins, the block discards the
number of samples specified in the Offset parameter. After this initial
period, the block sums the input signal along columns and resets the
sum to zero every N input samples, where N is the Integration period
parameter value. The reset occurs after the block produces its output at
that time step.

This block supports inputs and outputs of type double, single, and
fixed-point. The port data types are inherited from the signals that
drive the block.

The integrate-and-dump operation is often used in a receiver model
when the system’s transmitter uses a simple square-pulse model. It
can also be used in fiber optics and in spread-spectrum communication
systems such as CDMA (code division multiple access) applications.

The input can be either a scalar or a frame-based matrix. If the input is
frame-based, then it must have k*N rows for some positive integer k,
and the block processes each column independently.

The output contents, dimensions, and sample time are affected by the
Output intermediate values check box, as follows:

• If you clear the check box, then the block outputs the cumulative
sum at each reset time.

- If the input is sample-based, then the output sample time is N
times the input sample time and the block experiences a delay
whose duration is one output sample period. In this case, the
output dimensions match the input dimensions.

- If the input is a frame-based (k*N)-by-n matrix, then the output is
k-by-n. In this case, the block experiences no delay and the output
frame period matches the input frame period.

2-277



Integrate and Dump

• If you select the check box, then the block outputs the cumulative
sum at each time step, including the reset times. The output has the
same sample time and the same matrix dimensions as the input.

This block will work within a triggered subsystem, as long as it is used
in the single-rate mode.

Transients and Delays

A nonzero value in the Offset parameter causes the block to output one
or more zeros during the initial period while it discards input samples.
If the input is a frame-based matrix with n columns and the Offset
parameter is a length-n vector, then the mth element of the Offset
vector is the offset for the mth column of data. If Offset is a scalar, then
the block applies the same offset to each column of data. The output of
initial zeros due to a nonzero Offset value is a transient effect, not a
persistent delay.

When the Output intermediate values check box is cleared,
the block’s output is delayed, relative to its input, throughout the
simulation:

• If the input is sample-based, then the output is delayed by one
sample after any transient effect is over. That is, after removing
transients from the input and output, you can see the result of the
mth integration period in the output sample indexed by m+1.

• If the input is frame-based and the Offset parameter is nonzero,
then after the transient effect is over, the result of each integration
period appears in the output frame corresponding to the last input
sample of that integration period. This is one frame later than
the output frame corresponding to the first input sample of that
integration period, in cases where an integration period spans two
input frames. For an example of this situation, see “Example of
Transient and Delay” on page 2-280.
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Dialog
Box

Integration period
The number of input samples between resets.

Offset
A nonnegative integer vector or scalar specifying the number of
input samples to discard from each column of input data at the
beginning of the simulation.

Output intermediate values
Determines whether the block suppresses the intermediate
cumulative sums between successive resets.

Examples If Integration period is 4 and Offset is the scalar 3, then the table
below shows how the block treats the beginning of a ramp (1, 2, 3, 4,...)
in several situations. (The values shown in the table do not reflect
vector sizes but merely indicate numerical values.)
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Output
intermediate
values Check
Box

Input Signal
Properties

First Several Output
Values

Cleared Sample-based
scalar

0, 0, 4+5+6+7, and
8+9+10+11, where one 0
is an initial transient value
and the other 0 is a delay
value that results from
the cleared check box and
sample-based input.

Cleared Frame-based
column vector of
length 4

0, 4+5+6+7, and 8+9+10+11,
where 0 is an initial delay
value that results from the
nonzero offset. The output is
a frame-based scalar.

Selected Sample-based
scalar

0, 0, 0, 4, 4+5, 4+5+6,
4+5+6+7, 8, 8+9, 8+9+10,
8+9+10+11, and 12, where
the three 0s are initial
transient values.

Selected Frame-based
column vector of
length 4

0, 0, 0, 4, 4+5, 4+5+6,
4+5+6+7, 8, 8+9, 8+9+10,
8+9+10+11, and 12, where
the three 0s are initial
transient values. The output
is a frame-based column
vector of length 4.

In all cases, the block discards the first three input samples (1, 2, and 3).

Example of Transient and Delay

The figure below illustrates a situation in which the block exhibits both
a transient effect for three output samples, as well as a one-sample delay
in alternate subsequent output samples for the rest of the simulation.
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The figure also indicates how the input and output values are organized
as frame-based column vectors. In each vector in the figure, the
last sample of each integration period is underlined, discarded input
samples are white, and transient zeros in the output are white.
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The transient effect lasts for ceil(13/5) output samples because the
block discards 13 input samples and the integration period is 5. The
first output sample after the transient effect is over, 80, corresponds
to the sum 14+15+16+17+18 and appears at the time of the input
sample 18. The next output sample, 105, corresponds to the sum
19+20+21+22+23 and appears at the time of the input sample 23. Notice
that the input sample 23 is one frame later than the input sample 19;
that is, this five-sample integration period spans two input frames. As
a result, the output of 105 is delayed compared to the first input (19)
that contributes to that sum.

See Also Windowed Integrator, Discrete-Time Integrator (Simulink), Ideal
Rectangular Pulse Filter
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Purpose Alternately select elements from two input vectors to generate output
vector

Library Sequence Operations

Description The Interlacer block accepts two inputs that have the same vector
size, complexity, and sample time. It produces one output vector by
alternating elements from the first input (labeled O for odd) and from
the second input (labeled E for even) . As a result, the output vector size
is twice that of either input. The output vector has the same complexity
and sample time of the inputs.

The inputs can be either scalars or frame-based column vectors. The
block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signals.

This block can be useful for combining in-phase and quadrature
information from separate vectors into a single vector.

Dialog
Box

Examples If the two input vectors are frame-based with values [1; 2; 3; 4] and
[5; 6; 7; 8], then the output vector is [1; 5; 2; 6; 3; 7; 4; 8].

Pair Block Deinterlacer

See Also General Block Interleaver; Mux (Simulink)
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Purpose Create complex baseband model of signal impairments caused by
imbalances between in-phase and quadrature receiver components

Library RF Impairments

Description The I/Q Imbalance block creates a complex baseband model of the signal
impairments caused by imbalances between in-phase and quadrature
receiver components. Typically, these are caused by differences in the
physical channels for the two components of the signal.

The I/Q Imbalance block applies amplitude and phase imbalances to
the in-phase and quadrature components of the input signal, and then
combines the results into a complex signal. The block

1 Separates the signal into its in-phase and quadrature components.

2 Applies amplitude and phase imbalances, specified by the I/Q
amplitude imbalance (dB) and I/Q phase imbalance (deg)
parameters, respectively, to both components.

3 Combines the in-phase and quadrature components into a complex
signal.

4 Applies an in-phase dc offset, specified by the I dc offset parameter,
and a quadrature offset, specified by the Q dc offset parameter, to
the signal.

The block performs these operations in the subsystem shown in the
following diagram, which you can view by right-clicking the block and
selecting Look under mask:
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The value of the I/Q amplitude imbalance (dB) parameter is divided
between the in-phase and quadrature components:

• If you enter a positive value X for the I/Q amplitude imbalance
(dB), the block applies a gain of +X/2 dB to the in-phase component
and a gain of -X/2 dB to the quadrature component.

• If you enter a negative value X for the I/Q amplitude imbalance
(dB), the block applies a gain of -X/2 dB to the in-phase component
and a gain of +X/2 dB to the quadrature component.

The effects of changing the block’s parameters are illustrated by the
following scatter plots of a signal modulated by 16-ary quadrature
amplitude modulation (QAM) with an average power of 0.01 watts.
The usual 16-ary QAM constellation without distortion is shown in
the first scatter plot:
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The following figure shows a scatter plot of an output signal, modulated
by 16-ary QAM, from the I/Q block with I/Q amplitude imbalance
(dB) set to 8 and all other parameters set to 0:
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Observe that the scatter plot is stretched horizontally and compressed
vertically compared to the undistorted constellation.

If you set IQ phase imbalance (deg) to 30 and all other parameters to
0, the scatter plot is skewed clockwise by 30 degrees, as shown below:
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Setting the I dc offset to 0.02 and the Q dc offset to 0.04 shifts the
constellation 0.02 to the right and 0.04 up, as shown below:
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See “Scatter Plot Examples” for a description of the model that
generates this plot.

Dialog
Box
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I/Q amplitude imbalance (dB)
Scalar specifying the I/Q amplitude imbalance in decibels.

I/Q phase imbalance (deg)
Scalar specifying the I/Q phase imbalance in degrees.

I dc offset
Scalar specifying the in-phase dc offset.

Q dc offset
Scalar specifying the amplitude dc offset.

See Also Memoryless Nonlinearity
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Purpose Generate Kasami sequence from set of Kasami sequences

Library Sequence Generators sublibrary of Comm Sources

Description The Kasami Sequence Generator block generates a sequence from the
set of Kasami sequences. The Kasami sequences are a set of sequences
that have good cross-correlation properties.

There are two classes of Kasami sequences: the small set and the large
set. The large set contains all the sequences in the small set. Only the
small set is optimal in the sense of matching Welch’s lower bound for
correlation functions.

Kasami sequences have period N = 2n - 1, where n is a nonnegative,
even integer. Let u be a binary sequence of length N, and let w be the
sequence obtained by decimating u by 2n/2 +1. The small set of Kasami
sequences is defined by the following formulas, in which T denotes

the left shift operator, m is the shift parameter for w, and ⊕ denotes
addition modulo 2.

K u n m
u m

u T w m
s m n( , , )

,..., /=
= −

⊕ = −

⎧
⎨
⎪

⎩⎪

1

0 2 22

Small Set of Kasami Sequences for n Even

Note that the small set contains 2n/2 sequences.

For mod(n, 4) = 2, the large set of Kasami sequences is defined as
follows. Let v be the sequence formed by decimating the sequence u by
2n/2 + 1+ 1. The large set is defined by the following table, in which k and
m are the shift parameters for the sequences v and w, respectively.
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Large Set of Kasami Sequences for mod(n, 4) = 2

The sequences described in the first three rows of the preceding figure
correspond to the Gold sequences for mod(n, 4) = 2. See the reference
page for the Gold Sequence Generator block for a description of Gold
sequences. However, the Kasami sequences form a larger set than the
Gold sequences.

The correlation functions for the sequences takes on the values

{-t(n), -s(n), -1, s(n) -2 , t(n) - 2}

where

t n n

s n t n

n( )

( ) ( )

( ) /= +

= +( )

+1 2
1
2

1

2 2,  even

Block Parameters

The Generator polynomial parameter specifies the generator
polynomial, which determines the connections in the shift register that
generates the sequence u. You can specify the Generator polynomial
parameter using either of these formats:

• A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.
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• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same
polynomial, p(z) = z8+z2+1.

The Initial states parameter specifies the initial states of the shift
register that generates the sequence u. Initial States is a binary
scalar or row vector of length equal to the degree of the Generator
polynomial. If you choose a binary scalar, the block expands the
scalar to a row vector of length equal to the degree of the Generator
polynomial, all of whose entries equal the scalar.

The Sequence index parameter specifies the shifts of the sequences
v and w used to generate the output sequence. You can specify the
parameter in either of two ways:

• To generate sequences from the small set, for n is even, you can
specify the Sequence index as an integer m. The range of m is
[-1, ..., 2n/2 - 2]. The following table describes the output sequences
corresponding to Sequence index m:

Sequence
Index Range of Indices Output Sequence

-1 m = -1 u

m m = 0, ... , 2n/2 - 2
u T wm⊕

• To generate sequences from the large set, for mod (n, 4) = 2, where
n is the degree of the Generator polynomial, you can specify
Sequence index as an integer vector [k m]. In this case, the output
sequence is from the large set. The range for k is [-2, ..., 2n - 2], and
the range for m is [-1, ..., 2n/2 - 2]. The following table describes the
output sequences corresponding to Sequence index [k m]:
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Sequence Index
[k m] Range of Indices Output Sequence

[-2 -1] k = -2, m = -1 u

[-1 -1] k = -1, m = -1 v

[k -1] k = 0, 1, ... , 2n - 2

m = -1
u T vk⊕

[-2 m] k = -2

m = 0, 1, ..., 2n/2 - 2
u T wm⊕

[-1 m] k = -1

m = 0, ... , 2n/2 - 2
v T wm⊕

[k m] k = 0, ... , 2n - 2

m = 0, ... , 2n/2 - 2
u T v T wk m⊕ ⊕

You can shift the starting point of the Gold sequence with the Shift
parameter, which is an integer representing the length of the shift.

You can use an external signal to reset the values of the internal shift
register to the initial state by selecting the Reset on nonzero input
check box. This creates an input port for the external signal in the
Kasami Sequence Generator block. The way the block resets the
internal shift register depends on whether its output signal and the
reset signal are sample-based or frame-based. See “Example: Resetting
a Signal” on page 2-435 for an example.

Polynomials for Generating Kasami Sequences

The following table lists some of the polynomials that you can use to
generate the Kasami set of sequences.

n N Polynomial Set

4 15 [4 1 0] Small

6 63 [6 1 0] Large
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n N Polynomial Set

8 255 [8 4 3 2 0] Small

10 1023 [10 3 0] Large

12 4095 [12 6 4 1 0] Small

Dialog
Box
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Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Generator polynomial
Binary vector specifying the generator polynomial for the
sequence u.

Initial states
Binary scalar or row vector of length equal to the degree of the
Generator polynomial, which specifies the initial states of the
shift register that generates the sequence u.

Sequence index
Integer or vector specifying the shifts of the sequences v and w
used to generate the output sequence.

Shift
Integer scalar that determines the offset of the Kasami sequence
from the initial time.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the
internal shift registers to the original values of the Initial states.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

See Also Gold Sequence Generator, PN Sequence Generator
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Reference [1] Peterson and Weldon, Error Correcting Codes, 2nd Ed., MIT Press,
Cambridge, MA, 1972.

[2] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[3] Sarwate, D. V. and Pursley, M.B., "Crosscorrelation Properties of
Pseudorandom and Related Sequences," Proc. IEEE, Vol. 68, No. 5,
May 1980, pp. 583-619.
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Purpose Implement linearized version of a baseband phase-locked loop

Library Components sublibrary of Synchronization

Description The Linearized Baseband PLL block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match
the phase of an input signal. Unlike thePhase-Locked Loop block, this
block uses a baseband model method. Unlike theBaseband PLL block,
which uses a nonlinear model, this block simplifies the computations
by using x to approximate sin(x). The baseband PLL model depends on
the amplitude of the incoming signal but does not depend on a carrier
frequency.

This PLL has these three components:

• An integrator used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify the sensitivity of the
VCO signal to its input using the VCO input sensitivity parameter.
This parameter, measured in Hertz per volt, is a scale factor that
determines how much the VCO shifts from its quiescent frequency.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector
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• The output of the VCO

Dialog
Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO’s quiescent frequency.

See Also Baseband PLL, Phase-Locked Loop

References For more information about phase-locked loops, see the works
listed in“Selected Bibliography for Synchronization” in Using the
Communications Blockset.
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Purpose Equalize using decision feedback equalizer that updates weights with
LMS algorithm

Library Equalizers

Description The LMS Decision Feedback Equalizer block uses a decision feedback
equalizer and the LMS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation,
the block uses the LMS algorithm to update the weights, once per
symbol. If the Number of samples per symbol parameter is 1, then
the block implements a symbol-spaced equalizer; otherwise, the block
implements a fractionally spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.
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Dialog
Box

Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.
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Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0
and 1. A value of 1 corresponds to a conventional weight update
algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.
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References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also LMS Linear Equalizer, Normalized LMS Decision Feedback Equalizer,
Sign LMS Decision Feedback Equalizer, Variable Step LMS Decision
Feedback Equalizer, RLS Decision Feedback Equalizer, CMA Equalizer
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Purpose Equalize using linear equalizer that updates weights with LMS
algorithm

Library Equalizers

Description The LMS Linear Equalizer block uses a linear equalizer and the LMS
algorithm to equalize a linearly modulated baseband signal through a
dispersive channel. During the simulation, the block uses the LMS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in“Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.
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Dialog
Box

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.
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Signal constellation
A vector of complex numbers that specifies the constellation for
the modulated signal, as determined by the modulator in your
model

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Step size
The step size of the LMS algorithm.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0
and 1. A value of 1 corresponds to a conventional weight update
algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

Examples See “Example: LMS Linear Equalizer” and the Adaptive Equalization
demo.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.
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[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also LMS Decision Feedback Equalizer, Normalized LMS Linear Equalizer,
Sign LMS Linear Equalizer, Variable Step LMS Linear Equalizer, RLS
Linear Equalizer, CMA Equalizer
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Matrix Deinterleaver

Purpose Permute input symbols by filling a matrix by columns and emptying it
by rows

Library Block sublibrary of Interleaving

Description The Matrix Deinterleaver block performs block deinterleaving by filling
a matrix with the input symbols column by column and then sending
the matrix contents to the output port row by row. The Number of
rows and Number of columns parameters are the dimensions of the
matrix that the block uses internally for its computations.

The length of the input vector must be Number of rows times
Number of columns. If the input is frame-based, then it must be a
column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box

Number of rows
The number of rows in the matrix that the block uses for its
computations.
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Number of columns
The number of columns in the matrix that the block uses for its
computations.

Examples If the Number of rows and Number of columns parameters are 2
and 3, respectively, then the deinterleaver uses a 2-by-3 matrix for its
internal computations. Given an input signal of [1; 2; 3; 4; 5; 6],
the block produces an output of [1; 3; 5; 2; 4; 6].

Pair Block Matrix Interleaver

See Also General Block Deinterleaver
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Purpose Restore ordering of input symbols by filling a matrix along diagonals

Library Block sublibrary of Interleaving

Description The Matrix Helical Scan Deinterleaver block performs block
deinterleaving by filling a matrix with the input symbols in a helical
fashion and then sending the matrix contents to the output port row
by row. The Number of rows and Number of columns parameters
are the dimensions of the matrix that the block uses internally for its
computations.

Helical fashion means that the block places input symbols along
diagonals of the matrix. The number of elements in each diagonal
matches the Number of columns parameter, after the block wraps
past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each
diagonal after the first one begins one row below the first element
of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is,
the amount by which the row index increases as the column index
increases by one. This parameter must be an integer between zero and
the Number of rows parameter. If the Array step size parameter is
zero, then the block does not deinterleave and the output is the same
as the input.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.
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Dialog
Box

Number of rows
The number of rows in the matrix that the block uses for its
computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Array step size
The slope of the diagonals that the block writes.

Pair Block Matrix Helical Scan Interleaver

See Also General Block Deinterleaver
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Purpose Permute input symbols by selecting matrix elements along diagonals

Library Block sublibrary of Interleaving

Description The Matrix Helical Scan Interleaver block performs block interleaving
by filling a matrix with the input symbols row by row and then sending
the matrix contents to the output port in a helical fashion. The Number
of rows and Number of columns parameters are the dimensions of
the matrix that the block uses internally for its computations.

Helical fashion means that the block selects output symbols by selecting
elements along diagonals of the matrix. The number of elements in each
diagonal matches the Number of columns parameter, after the block
wraps past the edges of the matrix when necessary. The block traverses
diagonals so that the row index and column index both increase. Each
diagonal after the first one begins one row below the first element
of the previous diagonal.

The Array step size parameter is the slope of each diagonal, that is,
the amount by which the row index increases as the column index
increases by one. This parameter must be an integer between zero and
the Number of rows parameter. If the Array step size parameter is
zero, then the block does not interleave and the output is the same
as the input.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.
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Dialog
Box

Number of rows
The number of rows in the matrix that the block uses for its
computations.

Number of columns
The number of columns in the matrix that the block uses for its
computations.

Array step size
The slope of the diagonals that the block reads.

Examples If the Number of rows and Number of columns parameters are 6
and 4, respectively, then the interleaver uses a 6-by-4 matrix for its
internal computations. If the Array step size parameter is 1, then the
diagonals are as shown in the figure below. Positions with the same
color form part of the same diagonal, and diagonals with darker colors
precede those with lighter colors in the output signal.

Given an input signal of [1:24]', the block produces an output of
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Pair Block Matrix Helical Scan Deinterleaver

See Also General Block Interleaver
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Purpose Permute input symbols by filling a matrix by rows and emptying it
by columns

Library Block sublibrary of Interleaving

Description The Matrix Interleaver block performs block interleaving by filling a
matrix with the input symbols row by row and then sending the matrix
contents to the output port column by column.

The Number of rows and Number of columns parameters are
the dimensions of the matrix that the block uses internally for its
computations.

The number of elements of the input vector must be the product
of Number of rows and Number of columns. If the input is
frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box

Number of rows
The number of rows in the matrix that the block uses for its
computations.
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Number of columns
The number of columns in the matrix that the block uses for its
computations.

Examples If the Number of rows and Number of columns parameters are 2
and 3, respectively, then the interleaver uses a 2-by-3 matrix for its
internal computations. Given an input signal of [1; 2; 3; 4; 5; 6],
the block produces an output of [1; 4; 2; 5; 3; 6].

Pair Block Matrix Deinterleaver

See Also General Block Interleaver
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M-DPSK Demodulator Baseband

Purpose Demodulate DPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-DPSK Demodulator Baseband block demodulates a signal that
was modulated using the M-ary differential phase shift keying method.
The input is a baseband representation of the modulated signal. The
input and output for this block are discrete-time signals. The input can
be either a scalar or a frame-based column vector. The block accepts the
input data types single and double.

The M-ary number parameter, M, is the number of possible output
symbols that can immediately follow a given output symbol. The block
compares the current symbol to the previous symbol. The block’s first
output is the initial condition of zero (or a group of zeros, if the Output
type parameter is set to Bit) because there is no previous symbol.

Binary or Integer Outputs

If the Output type parameter is set to Integer, then the block
demodulates a phase difference of

θ + 2πk/M

to k, where θ is the Phase rotation parameter and k is an integer
between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
outputs binary representations of integers between 0 and M-1. It
outputs a group of K bits, called a binary word, for each symbol.

In binary output mode, the Constellation ordering parameter
indicates how the block maps an integer to a corresponding group of
K output bits. See the reference pages for theM-DPSK Modulator
Baseband andM-PSK Modulator Baseband blocks for details.
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Dialog
Box

M-ary number
The number of possible modulated symbols that can immediately
follow a given symbol.

Output type
Determines whether the output consists of integers or groups
of bits.

Constellation ordering
Determines how the block maps each integer to a group of output
bits.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.
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Pair Block M-DPSK Modulator Baseband

See Also DBPSK Demodulator Baseband, DQPSK Demodulator Baseband,
M-PSK Demodulator Baseband

References [1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial
and Satellite Channels," IEEE Transactions on Communications, Vol.
COM-32, July 1984, 752-761.
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Purpose Modulate using M-ary differential phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-DPSK Modulator Baseband block modulates using the M-ary
differential phase shift keying method. The output is a baseband
representation of the modulated signal. The M-ary number parameter,
M, is the number of possible output symbols that can immediately
follow a given output symbol.

The input must be a discrete-time signal. For integer inputs, the block
can accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double. For bit inputs, the block can accept int8, uint8,
int16, uint16, int32, uint32, boolean, single, and double.

Inputs and Constellation Types

If the Input type parameter is set to Integer, then valid input values
are integers between 0 and M-1. In this case, the input can be either
a scalar or a frame-based column vector. If the first input is k1, then
the modulated symbol is

exp j j
k
m

θ π+⎛
⎝⎜

⎞
⎠⎟

2 1

where θ is the Phase rotation parameter. If a successive input is k,
then the modulated symbol is

exp ( )j j
k
m

θ π+⎛
⎝⎜

⎞
⎠⎟
⋅2 previous modulated symbol

If the Input type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
accepts binary representations of integers between 0 and M-1. It
modulates each group of K bits, called a binary word. The input can be
either a vector of length K or a frame-based column vector whose length
is an integer multiple of K.
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In binary input mode, the Constellation ordering parameter
indicates how the block maps a group of K input bits to a corresponding
phase difference. The Binary option uses a natural binary-to-integer
mapping, while the Gray option uses a Gray-coded assignment of phase
differences. For example, the table below indicates the assignment
of phase difference to three-bit inputs, for both the Binary and Gray
options. θ is the Phase rotation parameter. The phase difference is
between the previous symbol and the current symbol.

Current Input
Binary-Coded
Phase Difference

Gray-Coded Phase
Difference

[0 0 0] jθ jθ

[0 0 1] jθ + jπ/4 jθ + jπ/4

[0 1 0] jθ + jπ2/4 jθ + jπ3/4

[0 1 1] jθ + jπ3/4 jθ + jπ2/4

[1 0 0] jθ + jπ4/4 jθ + jπ7/4

[1 0 1] jθ + jπ5/4 jθ + jπ6/4

[1 1 0] jθ + jπ6/4 jθ + jπ4/4

[1 1 1] jθ + jπ7/4 jθ + jπ5/4

For more details about the Binary and Gray options, see the reference
page for theM-PSK Modulator Baseband block. The signal constellation
for that block corresponds to the arrangement of phase differences for
this block.
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Dialog
Box

M-ary number
The number of possible output symbols that can immediately
follow a given output symbol.

Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a
corresponding integer.

Phase rotation (rad)
The phase difference between the previous and current modulated
symbols when the input is zero.

Output data type
The output data type can be either single or double. By default,
the block sets this to double.
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Pair Block M-DPSK Demodulator Baseband

See Also DBPSK Modulator Baseband, DQPSK Modulator Baseband, M-PSK
Modulator Baseband

References [1] Pawula, R. F., "On M-ary DPSK Transmission Over Terrestrial
and Satellite Channels," IEEE Transactions on Communications, Vol.
COM-32, July 1984, 752-761.
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Memoryless Nonlinearity

Purpose Apply memoryless nonlinearity to complex baseband signal.

Library RF Impairments

Description The Memoryless Nonlinearity block applies a memoryless nonlinearity
to a complex, baseband signal. You can use the block to model radio
frequency (RF) impairments to a signal at the receiver.

The Memoryless Nonlinearity block provides five different methods for
modeling the nonlinearity, which you specify by the Method parameter.
The options for the Method parameter are

• Cubic polynomial

• Hyperbolic tangent

• Saleh model

• Ghorbani model

• Rapp model

The five methods are implemented by subsystems underneath the
block’s mask. Each subsystem has the same basic structure, as shown
in the figure below.

Nonlinearity Subsytem

All five subsystems apply a nonlinearity to the input signal as follows:

1 Multiply the signal by a gain factor.
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2 Split the complex signal into its its magnitude and angle components.

3 Apply an AM/AM conversion to the magnitude of the signal,
according to the selected Method, to produce the magnitude of the
output signal.

4 Apply an AM/PM conversion to the phase of the signal, according to
the selected Method, and adds the result to the angle of the signal to
produce the angle of the output signal.

5 Combine the new magnitude and angle components into a complex
signal and multiply the result by a gain factor, which is controlled
by the Linear gain parameter.

However, the subsystems implement the AM/AM and AM/PM
conversions differently, according to the Method you specify.

If you want to see exactly how the Memoryless Nonlinearity block
implements the conversions for a specific method, you can view the
AM/AM and AM/PM subsystems that implement these conversions
as follows:

1 Right-click on the Memoryless Nonlinearity block and select Look
under mask. This displays the block’s configuration underneath
the mask. The block contains five subsystems corresponding to the
five nonlinearity methods.

2 Double-click the subsystem for the method you are interested in. This
displays the subsystem shown in the preceding figure, Nonlinearity
Subsytem on page 2-325.

3 Double-click on one of the subsystems labeled AM/AM or AM/PM to
view how the block implements the conversions.

The following figure shows, for the Saleh method, plots of

• Output voltage against input voltage for the AM/AM conversion

• Output phase against input voltage for the AM/PM conversion
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You can see the effect of the Memoryless Nonlinearity block on a signal
modulated by 16-ary quadrature amplitude modulation (QAM) in a
scatter plot. The constellation for 16-ary QAM without the effect of the
Memoryless Nonlinearity block is shown in the following figure:
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You can generate a scatter plot of the same signal after it passes through
the Memoryless Nonlinearity block, with the Method parameter set to
Saleh Model, as shown in the following figure.
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This plot is generated by the model described in “Scatter Plot Examples”
with the following parameter settings for the Rectangular QAM
Modulator Baseband block:

• Normalization method set to Average Power

• Average power (watts) set to 1e-2

The following sections discuss parameters specific to the Saleh,
Ghorbani, and Rapp models.

Parameters for the Saleh Model

The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.
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The AM/AM parameters, alpha and beta, are used to compute the
amplitude gain for an input signal using the following function:

F u
u

u
AM AM/ ( )

*

*
=

+
alpha

beta1 2

where u is the magnitude of the scaled signal.

The AM/PM parameters, alpha and beta, are used to compute the phase
change for an input signal using the following function:

F u
u

u
AM PM/ ( )

*

*
=

+
alpha

beta

2

21

where u is the magnitude of the scaled signal. Note that the AM/AM
and AM/PM parameters, although similarly named alpha and beta,
are distinct.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Ghorbani Model

The Input scaling (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.

The AM/AM parameters, [x1 x2 x3 x4], are used to compute the amplitude
gain for an input signal using the following function:

F u
x u

x u
x uAM AM

x

x/ ( ) =
+

+1

3
4

2

21

where u is the magnitude of the scaled signal.

The AM/PM parameters, [y1 y2 y3 y4], are used to compute the phase
change for an input signal using the following function:
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F u
y u

y u
y uAM PM
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where u is the magnitude of the scaled signal.

The Output scaling (dB) parameter scales the output signal similarly.

Parameters for the Rapp Model

The Linear gain (dB) parameter scales the input signal before the
nonlinearity is applied. The block multiplies the input signal by the
parameter value, converted from decibels to linear units. If you set the
parameter to be the inverse of the input signal amplitude, the scaled
signal has amplitude normalized to 1.

The Smoothness factor and Output saturation level parameters
are used to compute the amplitude gain for the input signal:

F u
u

u
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AM AM
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⎟
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2 1 2

where u is the magnitude of the scaled signal, S is the Smoothness
factor, and Osat is the Output saturation level.

The Rapp model does not apply a phase change to the input signal.

The Output saturation level parameter limits the output signal level.
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Dialog
Box

Method
The nonlinearity method.

The following describes specific parameters for each method.

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.
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AM/PM conversion (degrees per dB)
Scaler specifying the AM/PM conversion in degrees per decibel.

Linear gain (db)
Scalar specifying the linear gain for the output function.

IIP3 (dBm)
Scalar specifying the third order intercept.

AM/PM conversion (degrees per dB)
Scalar specifying the AM/PM conversion in degrees per decibel.

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [alpha beta]
Vector specifying the AM/AM parameters.

AM/PM parameters [alpha beta]
Vector specifying the AM/PM parameters.
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Output scaling (dB)
Number that scales the output signal level.

Input scaling (dB)
Number that scales the input signal level.

AM/AM parameters [x1 x2 x3 x4]
Vector specifying the AM/AM parameters.

AM/PM parameters [y1 y2 y3 y4]
Vector specifying the AM/PM parameters.

Output scaling (dB)
Number that scales the output signal level.

Linear gain (db)
Scalar specifying the linear gain for the output function.

Smoothness factor
Scalar specifying the smoothness factor
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Output saturation level
Scalar specifying the the output saturation level.

See Also I/Q Imbalance

Reference [1] Saleh, A.A.M., "Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers," IEEE Trans. Communications,
vol. COM-29, pp.1715-1720, November 1981.

[2] A. Ghorbani, and M. Sheikhan, "The effect of Solid State Power
Amplifiers (SSPAs) Nonlinearities on MPSK and M-QAM Signal
Transmission", Sixth Int’l Conference on Digital Processing of Signals
in Comm., 1991, pp. 193-197.

[3] C. Rapp, "Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal
for a Digitial Sound Broadcasting System", in Proceedings of the Second
European Conference on Satellite Communications, Liege, Belgium,
Oct. 22-24, 1991, pp. 179-184.
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Purpose Demodulate FSK-modulated data

Library FM, in Digital Baseband sublibrary of Modulation

Description The M-FSK Demodulator Baseband block demodulates a signal that
was modulated using the M-ary frequency shift keying method. The
input is a baseband representation of the modulated signal. The input
and output for this block are discrete-time signals. The input can be
either a scalar or a frame-based column vector of type single or double.

The M-ary number parameter, M, is the number of frequencies in
the modulated signal. The Frequency separation parameter is the
distance, in Hz, between successive frequencies of the modulated signal.

The M-FSK Demodulator Baseband block implements a non-coherent
energy detector. To obtain the same BER performance as that of
coherent FSK demodulation, use the CPFSK Demodulator Baseband
block.

Binary or Integer Outputs

If the Output type parameter is set to Integer, then the block outputs
integers between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
outputs binary representations of integers between 0 and M-1. It
outputs a group of K bits, called a binary word, for each symbol.

For boolean typed integer outputs, the M-ary number parameter
must be 2. For Bit type outputs, the outputs must be of type boolean
or double.

In binary output mode, the Symbol set ordering parameter indicates
how the block maps an integer to a corresponding group of K output
bits. See the reference pages for theM-FSK Modulator Baseband
andM-PSK Modulator Baseband blocks for details.

Whether the output is an integer or a binary representation of an
integer, the block maps the highest frequency to the integer 0 and maps
the lowest frequency to the integer M-1. In baseband simulation, the
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lowest frequency is the negative frequency with the largest absolute
value.

Dialog
Box

M-ary number
The number of frequencies in the modulated signal.

Output type
Determines whether the output consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Symbol set ordering
Determines how the block maps each integer to a group of output
bits.
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Frequency separation (Hz)
The distance between successive frequencies in the modulated
signal.

Output data type
The output type of the block can be specified here as boolean,
int8, uint8, int16, uint16, int32, uint32, or double. By default,
the block sets this to double.

Pair Block M-FSK Modulator Baseband

See Also CPFSK Demodulator Baseband
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Purpose Modulate using M-ary frequency shift keying method

Library FM, in Digital Baseband sublibrary of Modulation

Description The M-FSK Modulator Baseband block modulates using the M-ary
frequency shift keying method. The output is a baseband representation
of the modulated signal.

The M-ary number parameter, M, is the number of frequencies in
the modulated signal. The Frequency separation parameter is
the distance, in Hz, between successive frequencies of the modulated
signal. If the Phase continuity parameter is set to Continuous, then
the modulated signal maintains its phase even when it changes its
frequency. If the Phase continuity parameter is set to Discontinuous,
then the modulated signal comprises portions of M sinusoids of different
frequencies; thus, a change in the input value might cause a change in
the phase of the modulated signal.

Input Signal Values

The input and output for this block are discrete-time signals. The
Input type parameter determines whether the block accepts integers
between 0 and M-1, or binary representations of integers:

• If Input type is set to Integer, then the block accepts integers. The
input can be either a scalar or a frame-based column vector of type
int8, uint8, int16, uint16, int32, uint32, or a double with an
integer value. They can also be boolean if the size of the alphabet is
2 (i.e. M = 2).

• If Input type is set to Bit, then the block accepts groups of K bits,
called binary words. The input can be either a vector of length K or a
frame-based column vector (whose length is an integer multiple of
K), and must be boolean or double typed, valued from the set {0,
1}. The Symbol set ordering parameter indicates how the block
assigns binary words to corresponding integers.

- If Symbol set ordering is set to Binary, then the block uses a
natural binary-coded ordering.

2-339



M-FSK Modulator Baseband

- If Symbol set ordering is set to Gray, then the block uses a
Gray-coded ordering. For details about the Gray coding, see the
reference page for theM-PSK Modulator Baseband block.

Whether the input is an integer or a binary representation of an integer,
the block maps the integer 0 to the highest frequency and maps the
integer M-1 to the lowest frequency. In baseband simulation, the lowest
frequency is the negative frequency with the largest absolute value.

Dialog
Box

M-ary number
The number of frequencies in the modulated signal.
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Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Symbol set ordering
Determines how the block maps each group of input bits to a
corresponding integer.

Frequency separation (Hz)
The distance between successive frequencies in the modulated
signal.

Phase continuity
Determines whether the modulated signal changes phases in a
continuous or discontinuous way.

Output data type
The output type of the block can be specified as either a double or
a single. By default, the block sets this to double.

Pair Block M-FSK Demodulator Baseband

See Also CPFSK Modulator Baseband
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Purpose Equalize using Viterbi algorithm

Library Equalizers

Description The MLSE Equalizer block uses the Viterbi algorithm to equalize a
linearly modulated signal through a dispersive channel. The block
receives a frame-based input signal and outputs the maximum
likelihood sequence estimate (MLSE) of the signal, using an estimate of
the channel modeled as a finite input response (FIR) filter.

This block supports single and double data types.

Channel Estimates

The channel estimate takes the form of a column vector containing the
coefficients of an FIR filter in descending order of powers. The length
of this vector is the channel memory, which must be a multiple of the
block’s Samples per input symbol parameter.

To specify the channel estimate vector, use one of these methods:

• Set Specify channel via to Dialog and enter the vector in the
Channel coefficients field.

• Set Specify channel via to Input port. The block displays an
additional input port, labeled Ch, that receives a frame-based vector.

Signal Constellation

The Signal constellation parameter specifies the constellation for
the modulated signal, as determined by the modulator in your model.
Signal constellation is a vector of complex numbers, where the kth
complex number in the vector is the constellation point to which the
modulator maps the integer k-1.

Note The sequence of constellation points must be consistent between
the modulator in your model and the Signal constellation parameter
in this block.
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For example, to specify the constellation given by the mapping

0 1
1 1
2 1
3 1

→ + +
→ − +
→ − −
→ + −

i
i
i
i

set Constellation points to [1+i, -1+i, -1-i, 1-i]. Note that the
sequence of numbers in the vector indicates how the modulator maps
integers to the set of constellation points. The labeled constellation
is shown below.

# "

+ &

Preamble and Postamble

If your data is accompanied by a preamble (prefix) or postamble (suffix),
then configure the block accordingly:
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• If you select Input contains preamble, then the Expected
preamble parameter specifies the preamble that you expect to
precede the data in the input signal.

• If you check the Input contains postamble, then the Expected
postamble parameter specifies the postamble that you expect to
follow the data in the input signal.

The Expected preamble or Expected postamble parameter must
be a vector of integers between 0 and M-1, where M is the number of
constellation points. An integer value of k-1 in the vector corresponds to
the kth entry in the Constellation points vector and, consequently, to
a modulator input of k-1.

The preamble or postamble must already be included at the beginning or
end, respectively, of the input signal to this block. If necessary, you can
concatenate vectors in Simulink using the Matrix Concatenation block.

To learn how the block uses the preamble and postamble, see “"Reset
Every Frame" Operation Mode” on page 2-344 below.

"Reset Every Frame" Operation Mode

One way that the Viterbi algorithm can transition between successive
frames is called Reset every frame mode. You can choose this mode
using the Operation mode parameter.

In Reset every frame mode, the block decodes each frame of data
independently, resetting the state metric at the end of each frame. The
traceback decoding always starts at the state with the minimum state
metric.

The initialization of state metrics depends on whether you specify a
preamble and/or postamble:

• If you do not specify a preamble, the decoder initializes the metrics of
all states to 0 at the beginning of each frame of data.

• If you specify a preamble, the block uses it to initialize the state
metrics at the beginning of each frame of data. More specifically, the
block decodes the preamble and assigns a metric of 0 to the decoded
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state. If the preamble does not decode to a unique state – that is, if
the length of the preamble is less than the channel memory – the
decoder assigns a metric of 0 to all states that can be represented by
the preamble. Whenever you specify a preamble, the traceback path
ends at one of the states represented by the preamble.

• If you do not specify a postamble, the traceback path starts at the
state with the smallest metric.

• If you specify a postamble, the traceback path begins at the state
represented by the postamble. If the postamble does not decode to
a unique state, the decoder identifies the smallest of all possible
decoded states that are represented by the postamble and begins
traceback decoding at that state.

Note In Reset every frame mode, the input to the MLSE Equalizer
block must contain at least T symbols, not including an optional
preamble, where T is the Traceback depth parameter.

Continuous Operation Mode

An alternative way that the Viterbi algorithm can transition between
successive frames is called Continuous with reset option mode. You
can choose this mode using the Operation mode parameter.

In Continuous with reset option mode, the block initializes the
metrics of all states to 0 at the beginning of the simulation. At the
end of each frame, the block saves the internal state metric for use in
computing the traceback paths in the next frame.

If you select the Enable the reset input port check box, the block
displays another input port, labeled Rst. In this case, the block resets
the state metrics whenever the scalar value at the Rst port is nonzero.
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Decoding Delay

The MLSE Equalizer block introduces an output delay equal to the
Traceback depth in the Continuous with reset option mode, and
no delay in the Reset every frame mode.

Dialog
Box

Specify channel via
The method for specifying the channel estimate. If you select
Input port, the block displays a second input port that receives
the channel estimate. If you select Dialog, you can specify the
channel estimate as a vector of coefficients for an FIR filter in
the Channel coefficients field.

Channel coefficients
Vector containing the coefficients of the FIR filter that the block
uses for the channel estimate. This field is visible only if you set
Specify channel via to Dialog.
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Signal constellation
Vector of complex numbers that specifies the constellation for the
modulation.

Traceback depth
The number of trellis branches (equivalently, the number of
symbols) the block uses in the Viterbi algorithm to construct each
traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are
Continuous with reset option and Reset every frame.

Input contains preamble
When checked, you can set the preamble in the Expected
preamble field. This option appears only if you set Operation
mode to Reset every frame.

Expected preamble
Vector of integers between 0 and M-1 representing the preamble,
where M is the size of the constellation. This field is visible and
active only if you set Operation mode to Reset every frame
and then select Input contains preamble.

Input contains postamble
When checked, you can set the postamble in the Expected
postamble field. This option appears only if you set Operation
mode to Reset every frame.

Expected postamble
Vector of integers between 0 and M-1 representing the postamble,
where M is the size of the constellation. This field is visible and
active only if you set Operation mode to Reset every frame
and then select Input contains postamble.

Samples per input symbol
The number of input samples for each constellation point.

Enable the reset input port
When you check this box, the block has a second input port labeled
Rst. Providing a nonzero input value to this port causes the block
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to set its internal memory to the initial state before processing the
input data. This option appears only if you set Operation mode
to Continuous with reset option.

See Also LMS Linear Equalizer, LMS Decision Feedback Equalizer, RLS Linear
Equalizer, RLS Decision Feedback Equalizer, CMA Equalizer

References [1] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.

[2] Steele, Raymond, Ed., Mobile Radio Communications, Chichester,
England, Wiley, 1996.

2-348



M-PAM Demodulator Baseband

Purpose Demodulate PAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The M-PAM Demodulator Baseband block demodulates a signal that
was modulated using the M-ary pulse amplitude modulation. The input
is a baseband representation of the modulated signal.

The signal constellation has M points, where M is the M-ary number
parameter. M must be an even integer. The block scales the signal
constellation based on how you set the Normalization method
parameter. For details on the constellation and its scaling, see the
reference page for theM-PAM Modulator Baseband block.

The input can be either a scalar or a frame-based column vector and
must be of data type single or double.

Output Signal Values

The Output type parameter determines whether the block produces
integers or binary representations of integers. If Output type is set to
Integer, then the block produces integers. If Output type is set to Bit,
then the block produces a group of K bits, called a binary word, for each
symbol. The Constellation ordering parameter indicates how the
block assigns binary words to points of the signal constellation. More
details are on the reference page for theM-PAM Modulator Baseband
block.
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Dialog
Box

M-ary number
The number of points in the signal constellation. It must be an
even integer.

Output type
Determines whether the output consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output
bits. This field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices
are Min. distance between symbols, Average Power, and
Peak Power.
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Minimum distance
The distance between two nearest constellation points. This
field appears only when Normalization method is set to Min.
distance between symbols.

Average power (watts)
The average power of the symbols in the constellation. This field
appears only when Normalization method is set to Average
Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field
appears only when Normalization method is set to Peak Power.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block M-PAM Modulator Baseband

See Also General QAM Demodulator Baseband
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Purpose Modulate using M-ary pulse amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The M-PAM Modulator Baseband block modulates using M-ary pulse
amplitude modulation. The output is a baseband representation of the
modulated signal. The M-ary number parameter, M, is the number of
points in the signal constellation. It must be an even integer.

Constellation Size and Scaling

Baseband M-ary pulse amplitude modulation using the block’s default
signal constellation maps an integer m between 0 and M-1 to the
complex value

2m - M + 1

Note This is actually a real number. The block’s output signal is a
complex data-type signal whose imaginary part is zero.

The block scales the default signal constellation based on how you set
the Normalization method parameter. The table below lists the
possible scaling conditions.

Value of Normalization
method Parameter Scaling Condition

Min. distance between
symbols

The nearest pair of points in the
constellation is separated by the
value of the Minimum distance
parameter
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Value of Normalization
method Parameter Scaling Condition

Average Power The average power of the symbols
in the constellation is the
Average power parameter

Peak Power The maximum power of the
symbols in the constellation is the
Peak power parameter

Input Signal Values

The input and output for this block are discrete-time signals. The
Input type parameter determines whether the block accepts integers
between 0 and M-1, or binary representations of integers.

• If Input type is set to Integer, then the block accepts integers. The
input can be either a scalar or a frame-based column vector of data
type int8, uint8, int16, uint16, int32, uint32, single, or double.

• If Input type is set to Bit, then the block accepts groups of K bits,
called binary words. The input can be either a vector of length K or
a frame-based column vector whose length is an integer multiple of
K. For bit inputs, the block can accept int8, uint8, int16, uint16,
int32, uint32, boolean, single, and double. The Constellation
ordering parameter indicates how the block assigns binary words to
points of the signal constellation.

- If Constellation ordering is set to Binary, then the block uses a
natural binary-coded constellation.

- If Constellation ordering is set to Gray, then the block uses a
Gray-coded constellation.

For details about the Gray coding, see the reference page for theM-PSK
Modulator Baseband block.
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Dialog
Box

M-ary number
The number of points in the signal constellation. It must be an
even integer.

Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices
are Min. distance between symbols, Average Power, and
Peak Power.
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Minimum distance
The distance between two nearest constellation points. This
field appears only when Normalization method is set to Min.
distance between symbols.

Average power (watts)
The average power of the symbols in the constellation. This field
appears only when Normalization method is set to Average
Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field
appears only when Normalization method is set to Peak Power.

Output data type
The output data type can be either single or double.

Pair Block M-PAM Demodulator Baseband

See Also General QAM Modulator Baseband
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Purpose Demodulate PSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-PSK Demodulator Baseband block demodulates a signal that
was modulated using the M-ary phase shift keying method. The input
is a baseband representation of the modulated signal. The input and
output for this block are discrete-time signals. The input can be either a
scalar or a frame-based column vector of data types single or double.
The M-ary number parameter, M, is the number of points in the signal
constellation.

Binary or Integer Outputs

If the Output type parameter is set to Integer, then the block maps
the point

exp(jθ + j2πm/M)

to m, where θ is the Phase offset parameter and m is an integer
between 0 and M-1.

If the Output type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
outputs binary representations of integers between 0 and M-1. It
outputs a group of K bits, called a binary word, for each symbol.

In binary output mode, the Constellation ordering parameter
indicates how the block maps an integer to a corresponding group of K
output bits. See the reference page for theM-PSK Modulator Baseband
block for details.
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Dialog
Box

M-ary number
The number of points in the signal constellation.

Output type
Determines whether the output consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each integer to a group of output
bits.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.
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Pair Block M-PSK Modulator Baseband

See Also BPSK Demodulator Baseband, QPSK Demodulator Baseband, M-DPSK
Demodulator Baseband
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Purpose Modulate using M-ary phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The M-PSK Modulator Baseband block modulates using the M-ary
phase shift keying method. The output is a baseband representation
of the modulated signal. The M-ary number parameter, M, is the
number of points in the signal constellation.

Baseband M-ary phase shift keying modulation with a phase offset of θ
maps an integer m between 0 and M-1 to the complex value

exp(jθ + j2πm/M)

The input and output for this block are discrete-time signals. To use
integers between 0 and M-1 as input values, set the Input type
parameter to Integer. In this case, the input can be either a scalar or
a frame-based column vector. For integer inputs, the block can accept
the data types int8, uint8, int16, uint16, int32, uint32, single,
and double. For bit inputs, the block can accept int8, uint8, int16,
uint16, int32, uint32, boolean, single, and double.

Alternative configurations of the block determine how the block
interprets its input and arranges its output, as explained in the sections
below.

Binary Inputs

If the Input type parameter is set to Bit and the M-ary number
parameter has the form 2K for some positive integer K, then the block
accepts binary representations of integers between 0 and M-1. It
modulates each group of K bits, called a binary word. The input can be
either a vector of length K or a frame-based column vector whose length
is an integer multiple of K.

The Constellation ordering parameter indicates how the block maps
a group of K input bits to a corresponding integer. Choices are Binary
and Gray. For more information, see “Binary-Valued and Integer-Valued
Signals” in Using the Communications Blockset.
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If Constellation ordering is set to Gray, then the block uses a
Gray-coded signal constellation; as a result, binary representations
that differ in more than one bit cannot map to consecutive integers
modulo M. The explicit mapping is described in “Algorithm” on page
2-362 below.

Frame-Based Inputs

If the input is a frame-based column vector, then the block processes
several integers or several binary words, in each time step. (If the
Input type parameter is set to Bit, then a binary word consists of
log2(M) bits.)

For example, the schematics below illustrate how the block processes
two 8-ary integers or binary words in one time step. The signals
involved are all frame-based column vectors. In both cases, the Phase
offset parameter is 0.
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Dialog
Box

M-ary number
The number of points in the signal constellation.

Input type
Indicates whether the input consists of integers or groups of
bits. If this parameter is set to Bit, then the M-ary number
parameter must be 2K for some positive integer K.

Constellation ordering
Determines how the block maps each group of input bits to a
corresponding integer.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be either single or double. By default,
the block sets this to double.
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Algorithm If the Constellation ordering parameter is set to Gray, then the block
internally assigns the binary inputs to points of a predefined Gray-coded
signal constellation. The block’s predefined M-ary Gray-coded signal
constellation assigns the binary representation

de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

to the mth phase. The zeroth phase in the constellation is the
Phase offset parameter, and successive phases are counted in a
counterclockwise direction.

Note This transformation might seem counterintuitive because it
constitutes a Gray-to-binary mapping. However, the block must use
it to impose a Gray ordering on the signal constellation, which has a
natural binary ordering.

In other words, if the block input is the natural binary representation,
u, of the integer U, then the block output has phase

jθ + j2πm/M

where θ is the Phase offset parameter and m is an integer between 0
and M-1 that satisfies

m m U XOR / 2⎢⎣ ⎥⎦ =

For example, if M = 8, then the binary representations that correspond
to the zeroth through seventh phases are below.

M = 8; m = [0:M-1]';
de2bi(bitxor(m,floor(m/2)), log2(M),'left-msb')

ans =

0 0 0
0 0 1
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0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

Below is the 8-ary Gray-coded constellation that the block uses if the
Phase offset parameter is π/8.

"##

"#"

""#

### #"#

"""

##" #""

Pair Block M-PSK Demodulator Baseband

See Also BPSK Modulator Baseband, QPSK Modulator Baseband, M-DPSK
Modulator Baseband
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Purpose Recover carrier phase using M-Power method

Library Carrier Phase Recovery sublibrary of Synchronization

Description The M-PSK Phase Recovery block recovers the carrier phase of the input
signal using the M-Power method. This feedforward, non-data-aided,
clock-aided method is suitable for systems that use baseband phase
shift keying (PSK) modulation. It is also suitable for systems that
use baseband quadrature amplitude modulation (QAM), although the
results are less accurate than those for comparable PSK systems. The
alphabet size for the modulation must be an even integer.

For PSK signals, the M-ary number parameter is the alphabet size.
For QAM signals, the M-ary number should be 4 regardless of the
alphabet size because the 4-power method is the most appropriate for
QAM signals.

The M-Power method assumes that the carrier phase is constant over
a series of consecutive symbols, and returns an estimate of the carrier
phase for the series. The Observation interval parameter is the
number of symbols for which the carrier phase is assumed constant.
This number must be an integer multiple of the input signal’s vector
length.

Input and Outputs

The input signal must be a frame-based column vector or a sample-based
scalar of type double or single. The input signal represents a baseband
signal at the symbol rate, so it must be complex-valued and must
contain one sample per symbol.

The outputs are as follows:

• The output port labeled Sig gives the result of rotating the input
signal counterclockwise, where the amount of rotation equals the
carrier phase estimate. The Sig output is thus a corrected version
of the input signal, and has the same sample time and vector size
as the input signal.
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• The output port labeled Ph outputs the carrier phase estimate, in
degrees, for all symbols in the observation interval. The Ph output is
a scalar signal.

Note Because the block internally computes the argument of
a complex number, the carrier phase estimate has an inherent
ambiguity. The carrier phase estimate is between -180/M and 180/M
degrees and might differ from the actual carrier phase by an integer
multiple of 360/M degrees.

Delays and Latency

The block’s algorithm requires it to collect symbols during a period of
length Observation interval before computing a single estimate of the
carrier phase. Therefore, each estimate is delayed by Observation
interval symbols and the corrected signal has a latency of Observation
interval symbols, relative to the input signal.

Dialog
Box

M-ary number
The number of points in the signal constellation of the transmitted
PSK signal, or 4 for a QAM signal. This must be an even integer.
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Observation interval
The number of symbols for which the carrier phase is assumed
constant.

Examples See “Carrier Phase Recovery Example” in Using the Communications
Blockset.

Algorithm If the symbols occurring during the observation interval are x(1), x(2),
x(3),..., x(L), then the resulting carrier phase estimate is

1

1M
x k M

k

L
arg ( ( ))

=
∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

where the arg function returns values between -180 degrees and 180
degrees.

References [1] Mengali, Umberto, and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[2] Moeneclaey, Marc, and Geert de Jonghe, "ML-Oriented NDA
Carrier Synchronization for General Rotationally Symmetric Signal
Constellations," IEEE Transactions on Communications, Vol. 42, No. 8,
Aug. 1994, pp. 2531-2533.

See Also CPM Phase Recovery, M-PSK Modulator Baseband
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Purpose Decode trellis-coded modulation data, modulated using PSK method

Library Trellis-Coded Modulation

Description The M-PSK TCM Decoder block uses the Viterbi algorithm to decode a
trellis-coded modulation (TCM) signal that was previously modulated
using a PSK signal constellation.

The M-ary number parameter is the number of points in the signal
constellation, which also equals the number of possible output symbols
from the convolutional encoder. (That is, log2(M-ary number) is the
number of output bit streams from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block
should match those in theM-PSK TCM Encoder block, to ensure proper
decoding.

Input and Output Signals

The input signal must be a frame-based column vector containing
complex numbers.

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the M-PSK TCM Decoder block’s output is a
frame-based binary column vector whose length is k times the vector
length of the input signal.

The input signal must be double or single. The reset port accepts
double or boolean.

Operation Modes

The block has three possible methods for transitioning between
successive frames. The Operation mode parameter controls which
method the block uses. This parameter also affects the range of possible
values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero
at the beginning of the simulation, waits until it accumulates D
symbols, and then uses a sequence of D symbols to compute each of
the traceback paths. D can be any positive integer. At the end of
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each frame, the block saves its internal state metric for use with
the next frame.

If you select the Enable the reset input check box, the block
displays another input port, labeled Rst. This port receives an
integer scalar signal. Whenever the value at the Rst port is nonzero,
the block resets all state metrics to zero and sets the traceback
memory to zero.

• In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the lowest metric. D must be
less than or equal to the vector length of the input.

• In Terminated mode, the block treats each frame independently.
The traceback path always starts at the all-zeros state. D must be
less than or equal to the vector length of the input. If you know that
each frame of data typically ends at the all-zeros state, then this
mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces
a decoding delay equal to Traceback depth*k bits, for a rate k/n
convolutional code. The decoding delay is the number of zeros that
precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

M-ary number
The number of points in the signal constellation.

Traceback depth
The number of trellis branches (equivalently, the number of
symbols) the block uses in the Viterbi algorithm to construct each
traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are
Continuous, Truncated, and Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled
Rst. Providing a nonzero input value to this port causes the block
to set its internal memory to the initial state before processing the
input data. This option appears only if you set Operation mode
to Continuous.
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Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

Pair Block M-PSK TCM Encoder

See Also General TCM Decoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.
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Purpose Convolutionally encode binary data and modulate using PSK method

Library Trellis-Coded Modulation

Description The M-PSK TCM Encoder block implements trellis-coded modulation
(TCM) by convolutionally encoding the binary input signal and mapping
the result to a PSK signal constellation.

The M-ary number parameter is the number of points in the signal
constellation, which also equals the number of possible output symbols
from the convolutional encoder. (That is, log2(M-ary number) is equal
to n for a rate k/n convolutional code.)

Input and Output Signals

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the M-PSK TCM Encoder block’s input must be a
frame-based binary column vector whose length is L*k for some positive
integer L.

The output from the M-PSK TCM Encoder block is a frame-based
complex column vector of length L.

The input signal must be boolean.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in “Trellis Description of a Convolutional Encoder” in the
Communications Toolbox documentation. You can use this parameter
field in two ways:

• If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to
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poly2trellis(7,[171 133],171)

• If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is faster because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation,
compared to the usage in the previous bulleted item.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into
subsets called cosets, so as to maximize the minimum distance between
pairs of points in each coset. This block internally forms a valid partition
based on the value you choose for the M-ary number parameter.

The figure below shows the labeled set-partitioned signal constellation
that the block uses when M-ary number is 8. For constellations of
other sizes, see [1].
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

M-ary number
The number of points in the signal constellation.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

Pair Block M-PSK TCM Decoder

See Also General TCM Encoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001
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Purpose Demodulate MSK-modulated data

Library CPM, in Digital Baseband sublibrary of Modulation

Description The MSK Demodulator Baseband block demodulates a signal that was
modulated using the minimum shift keying method. The input is a
baseband representation of the modulated signal. The Phase offset
parameter is the initial phase of the modulated waveform.

Traceback Length and Output Delays

Internally, this block creates a trellis description of the modulation
scheme and uses the Viterbi algorithm. The Traceback length
parameter, D, in this block is the number of trellis branches used to
construct each traceback path. D influences the output delay, which
is the number of zero symbols that precede the first meaningful
demodulated value in the output.

• If the input signal is sample-based, then the delay consists of D+1
zero symbols.

• If the input signal is frame-based, then the delay consists of D zero
symbols.

Inputs and Outputs

The input can be either a scalar or a frame-based column vector and
must be of type single or double. If the Output type parameter is set
to Integer, then the block produces values of 1 and -1. If the Output
type parameter is set to Bit, then the block produces values of 0 and 1.

Processing an Upsampled Modulated Signal

The input signal can be an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

Output type
Determines whether the output consists of bipolar or binary
values.

Phase offset (rad)
The initial phase of the modulated waveform.

Samples per symbol
The number of input samples that represent each modulated
symbol.

Traceback length
The number of trellis branches that the Viterbi Decoder block
uses to construct each traceback path.

Output data type
The output data type can be boolean, int8, int16, int32, or
double.
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Pair Block MSK Modulator Baseband

See Also CPM Demodulator Baseband, Viterbi Decoder

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital
Phase Modulation, New York, Plenum Press, 1986.
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Purpose Modulate using minimum shift keying method

Library CPM, in Digital Baseband sublibrary of Modulation

Description The MSK Modulator Baseband block modulates using the minimum
shift keying method. The output is a baseband representation of the
modulated signal.

The Modulation index parameter times π radians is the phase shift
due to the latest symbol when that symbol is the integer 1. The Phase
offset parameter is the initial phase of the output waveform, measured
in radians.

Input Attributes

The input can be either a scalar or a frame-based column vector. If the
Input type parameter is set to Integer, then the block accepts values
of 1 and -1. If the Input type parameter is set to Bit, then the block
accepts values of 0 and 1.

Upsampling the Modulated Signal

This block can output an upsampled version of the modulated signal.
The Samples per symbol parameter is the upsampling factor. It must
be a positive integer. For more information, see “Upsampled Signals
and Rate Changes” in Using the Communications Blockset.
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Dialog
Box

Input type
Indicates whether the input consists of bipolar or binary values.

Phase offset (rad)
The initial phase of the output waveform.

Samples per symbol
The number of output samples that the block produces for each
integer or bit in the input.

Output data type
The output type of the block can be specified as a single or
double. By default, the block sets this to double.

Pair Block MSK Demodulator Baseband

See Also CPM Modulator Baseband

References [1] Anderson, John B., Tor Aulin, and Carl-Erik Sundberg, Digital
Phase Modulation, New York, Plenum Press, 1986.
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Purpose Recover symbol timing phase using fourth-order nonlinearity method

Library Timing Phase Recovery sublibrary of Synchronization

Description The MSK-Type Signal Timing Recovery block recovers the symbol
timing phase of the input signal using a fourth-order nonlinearity
method. This block implements a general non-data-aided feedback
method that is independent of carrier phase recovery but requires prior
compensation for the carrier frequency offset. This block is suitable for
systems that use baseband minimum shift keying (MSK) modulation or
Gaussian minimum shift keying (GMSK) modulation.

Inputs

By default, the block has one input port. The input signal could be (but
is not required to be) the output of a receive filter that is matched to the
transmitting pulse shape, or the output of a lowpass filter that limits
the amount of noise entering this block.

The input must be a scalar or a frame-based column vector. The input
uses N samples to represent each symbol, where N > 1 is the Samples
per symbol parameter. If the input is frame-based, then its vector
length is N*R, where R is a positive integer that indicates the number
of symbols per frame. If the input is sample-based, then its sample time
is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines
when the timing estimation process restarts, and must be a scalar
signal. The sample time of the Rst input equals the symbol period if the
input signal is sample-based, and the frame period if the input signal
is frame-based.

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each
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symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:

- If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.

- If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

• The Ph output gives the phase estimate for each symbol in the input
signal.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input signal is
frame-based and three symbols when the input signal is sample-based.
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Dialog
Box

Modulation type
The type of modulation in the system. Choices are MSK and GMSK.

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.
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Algorithm This block’s algorithm extracts timing information by passing the
sampled baseband signal through a fourth-order nonlinearity followed
by a digital differentiator whose output is smoothed to yield an error
signal. The algorithm then uses the error signal to make the sampling
adjustments.

More specifically, this block uses a timing error detector whose result
for the kth symbol is e(k), given in [2] by
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where

• r is the block’s input signal

• T is the symbol period

• Ts is the sampling period

• * means complex conjugate

• dk is the phase estimate for the kth symbol

• D is 1 for MSK and 2 for Gaussian MSK modulation

For more information about the role that e(k) plays in this block’s
algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

References [1] D’Andrea, A. N., U. Mengali, and R. Reggiannini, "A Digital
Approach to Clock Recovery in Generalized Minimum Shift Keying,"
IEEE Transactions on Vehicular Technology, Vol. 39, No. 3, August
1990, pp. 227-234.

[2] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

See Also Early-Late Gate Timing Recovery, Squaring Timing Recovery
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Purpose Recover symbol timing phase using Mueller-Muller method

Library Timing Phase Recovery sublibrary of Synchronization

Description The Mueller-Muller Timing Recovery block recovers the symbol timing
phase of the input signal using the Mueller-Muller method. This block
implements a decision-directed, data-aided feedback method that
requires prior recovery of the carrier phase.

Inputs

By default, the block has one input port. Typically, the input signal is
the output of a receive filter that is matched to the transmitting pulse
shape. The input must be a scalar or a frame-based column vector. The
input uses N samples to represent each symbol, where N > 1 is the
Samples per symbol parameter. If the input is frame-based, then its
vector length is N*R, where R is a positive integer that indicates the
number of symbols per frame. If the input is sample-based, then its
sample time is 1/N times the underlying symbol period.

If the Reset parameter is set to On nonzero input via port, then the
block has a second input port, labeled Rst. The Rst input determines
when the timing estimation process restarts, and must be a scalar. The
sample time of the Rst input equals the symbol period if the input signal
is sample-based, and the frame period if the input signal is frame-based.

Outputs

The block has two output ports, labeled Sym and Ph:

• The Sym output is the result of applying the estimated phase
correction to the input signal. This output is the signal value for each
symbol, which can be used for decision purposes. The values in the
Sym output occur at the symbol rate:

- If the input signal is a frame-based column vector of length N*R,
then the Sym output is a frame-based column vector of length R
having the same frame period.
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- If the input signal is a sample-based scalar with sample time T/N,
then the Sym output is a sample-based scalar with sample time T.

• The Ph output gives the phase estimate for each symbol in the input
signal.

The Ph output contains nonnegative real numbers less than N.
Noninteger values for the phase estimate correspond to interpolated
values that lie between two values of the input signal. The sample
time or frame period of the Ph output is the same as that of the Sym
output.

Note If the Ph output is very close to either zero or Samples per
symbol, or if the actual timing phase offset in your input signal is
very close to zero, then the block’s accuracy might be compromised
by small amounts of noise or jitter. The block works well when the
timing phase offset is significant rather than very close to zero.

Delays

This block incurs a delay of two symbols when the input signal is
frame-based and three symbols when the input signal is sample-based.
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Dialog
Box

Samples per symbol
The number of samples, N, that represent each symbol in the
input signal. This must be greater than 1.

Error update gain
A positive real number representing the step size that the block
uses for updating successive phase estimates. Typically, this
number is less than 1/N, which corresponds to a slowly varying
phase.

Reset
Determines whether and under what circumstances the block
restarts the phase estimation process. Choices are None, Every
frame, and On nonzero input via port. The last option causes
the block to have a second input port, labeled Rst.

Algorithm This block uses a timing error detector whose result for the kth symbol
is e(k), given by
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e k c y kT d c y k T dk k k k( ) Re{ ( ) (( ) )}* *= + − − +− −1 11

where

• y is the block’s input signal

• ck is the decision based on the sample value y(kT+dk)

• T is the symbol period

• dk is the phase estimate for the kth symbol

For more information about the role that e(k) plays in this block’s
algorithm, see “Feedback Methods for Timing Phase Recovery” in Using
the Communications Blockset.

References [1] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[2] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital
Communication Receivers, Vol 2, New York, Wiley, 1998.

[3] Mueller, K. H., and M. S. Muller, "Timing Recovery in Digital
Synchronous Data Receivers," IEEE Transactions on Communications,
Vol. COM-24, May 1976, pp. 516-531.

See Also Early-Late Gate Timing Recovery, Squaring Timing Recovery
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Mu-Law Compressor

Purpose Implement µ-law compressor for source coding

Library Source Coding

Description The Mu-Law Compressor block implements a µ-law compressor for the
input signal. The formula for the µ-law compressor is

y
V x V

x=
+
+

log( / )
log( )

sgn( )
1

1
µ
µ

where µ is the µ-law parameter of the compressor, V is the peak
magnitude of x, log is the natural logarithm, and sgn is the signum
function (sign in MATLAB).

The input can have any shape or frame status. This block processes
each vector element independently.

Dialog
Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value
of the output.

Pair Block Mu-Law Expander
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See Also A-Law Compressor

References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1988.
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Purpose Implement µ-law expander for source coding

Library Source Coding

Description The Mu-Law Expander block recovers data that the Mu-Law
Compressor block compressed. The formula for the µ-law expander,
shown below, is the inverse of the compressor function.

x
V

e yy V= −( )+
µ

µlog( ) / sgn( )1 1

The input can have any shape or frame status. This block processes
each vector element independently.

Dialog
Box

mu value
The µ-law parameter of the compressor.

Peak signal magnitude
The peak value of the input signal. This is also the peak value
of the output.

Pair Block Mu-Law Compressor

See Also A-Law Expander
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References [1] Sklar, Bernard. Digital Communications: Fundamentals and
Applications. Englewood Cliffs, N.J.: Prentice-Hall, 1988.
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Multipath Rayleigh Fading Channel

Purpose Simulate multipath Rayleigh fading propagation channel

Library Channels

Description The Multipath Rayleigh Fading Channel block implements a baseband
simulation of a multipath Rayleigh fading propagation channel. This
block is useful for modeling mobile wireless communication systems.
For details about fading channels, see the references listed below.

This block accepts only frame-based complex signals at its input. To
work with sample-based inputs, use the Frame conversion block of the
Signal Processing blockset to reformat the signal.

Relative motion between the transmitter and receiver causes Doppler
shifts in the signal frequency. The Jakes PSD (power spectral density)
determines the spectrum of the Rayleigh process.

Since a multipath channel reflects signals at multiple places, a
transmitted signal travels to the receiver along several paths that
may have different lengths and hence different associated time delays.
Fading occurs when signals traveling along different paths interfere
with each other. In the block’s parameter dialog, the Delay vector
specifies the time delay for each path. If the Normalize gain vector to
0 dB overall gain box is unchecked, then the Gain vector specifies the
gain for each path. If the box is checked, then the block uses a multiple
of Gain vector instead of the Gain vector itself, choosing the scaling
factor so that the channel’s effective gain considering all paths is 0 dB.

The number of paths is the length of Delay vector or Gain vector,
whichever is larger. If both of these parameters are vectors, then they
must have the same length; if exactly one of these parameters is a
scalar, then the block expands it into a vector whose size matches that
of the other vector parameter.

The block multiplies the input signal by samples of a
Rayleigh-distributed complex random process. The scalar Initial seed
parameter seeds the random number generator.

Double clicking this block during simulation or checking the block
dialog’s check-box labeled Open channel visualization at start of
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simulation will plot the channel characteristics using the channel
visualization tool. See in the Communications Toolbox User’s Guide
for details.

Dialog
Box

Maximum Doppler shift (Hz)
A positive scalar that indicates the maximum Doppler shift.

Delay vector (s)
A vector that specifies the propagation delay for each path.

Gain vector (dB)
A vector that specifies the gain for each path.

Normalize gain vector to 0 dB overall gain
Checking this box causes the block to scale the Gain vector
parameter so that the channel’s effective gain (considering all
paths) is 0 decibels.
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Initial seed
The scalar seed for the Gaussian noise generator.

Open channel visualization at start of simulation
Checking this box will open the channel visualization tool when
a simulation is started.

Complex path gains port
Checking this box will create a port that outputs the complex path
gains data. This is an N by M multichannel frame, where N is the
number of samples per frame and M is the number of discrete
paths (number of delays).

Channel filter delay port
Checking this box will create a port that outputs the filter delay
data.

Algorithm This implementation is based on the direct form simulator described in
Reference [1] below.

Some wireless applications, such as standard GSM (Global System for
Mobile Communication) systems, prefer to specify Doppler shifts in
terms of the speed of the mobile. If the mobile moves at speed v making
an angle of θ with the direction of wave motion, then the Doppler shift is

fd = (vf/c)cos θ

where f is the transmission carrier frequency and c is the speed of
light. The Doppler frequency is the maximum Doppler shift arising
from motion of the mobile.

See Also Rayleigh Noise Generator, Rician Fading Channel

References [1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam,
Simulation of Communication Systems, Second edition, New York,
Kluwer Academic/Plenum, 2000.
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[2] Jakes, William C., ed. Microwave Mobile Communications, New
York, IEEE Press, 1974.

[3] Lee, William C. Y., Mobile Communications Design Fundamentals,
2nd Ed. New York, Wiley, 1993.
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Normalized LMS Decision Feedback Equalizer

Purpose Equalize using decision feedback equalizer that updates weights with
normalized LMS algorithm

Library Equalizers

Description The Normalized LMS Decision Feedback Equalizer block uses a
decision feedback equalizer and the normalized LMS algorithm to
equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the normalized LMS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.
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Dialog
Box
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Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Step size
The step size of the normalized LMS algorithm.

Leakage factor
The leakage factor of the normalized LMS algorithm, a number
between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a
nonnegative real number. This parameter is used to overcome
difficulties when the algorithm’s input signal is small.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.
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Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

See Also Normalized LMS Linear Equalizer, LMS Decision Feedback Equalizer
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Purpose Equalize using linear equalizer that updates weights with normalized
LMS algorithm

Library Equalizers

Description The Normalized LMS Linear Equalizer block uses a linear equalizer
and the normalized LMS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation,
the block uses the normalized LMS algorithm to update the weights,
once per symbol. If the Number of samples per symbol parameter is
1, then the block implements a symbol-spaced equalizer; otherwise, the
block implements a fractionally spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.
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Dialog
Box

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.
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Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Step size
The step size of the normalized LMS algorithm.

Leakage factor
The leakage factor of the normalized LMS algorithm, a number
between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Bias
The bias parameter of the normalized LMS algorithm, a
nonnegative real number. This parameter is used to overcome
difficulties when the algorithm’s input signal is small.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

Examples See the Adaptive Equalization demo.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.
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See Also Normalized LMS Decision Feedback Equalizer, LMS Linear Equalizer
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OQPSK Demodulator Baseband

Purpose Demodulate OQPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The OQPSK Demodulator Baseband block demodulates a signal that
was modulated using the offset quadrature phase shift keying method.
The input is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The input can be
either a scalar or a frame-based column vector. The block accepts the
input data types single and double.

If the Output type parameter is set to Integer, then the block outputs
integers between 0 and 3. If the Output type parameter is set to Bit,
then the block outputs binary representations of such integers, in a
binary-valued vector whose length is an even number.

The input symbol period is half the period of each output integer or
bit pair. The constellation used to map bit pairs to symbols is on the
reference page for theOQPSK Modulator Baseband block.

Frame-Based Inputs

If the input is a frame-based column vector, then the block processes
several integers or several pairs of bits, in each time step. In this case,
the output sample time equals the input sample time, even though the
symbol period is half the output period.

Delays

The modulator-demodulator pair incurs a delay, as described in “Delays
in Digital Modulation”.
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Dialog
Box

Output type
Determines whether the output consists of integers or pairs of bits.

Phase offset (rad)
The amount by which the phase of the zeroth point of the signal
constellation is shifted from π/4.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block OQPSK Modulator Baseband

See Also QPSK Demodulator Baseband
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Purpose Modulate using offset quadrature phase shift keying method

Library PM, in Digital Baseband sublibrary of Modulation

Description The OQPSK Modulator Baseband block modulates using the offset
quadrature phase shift keying method. The output is a baseband
representation of the modulated signal.

If the Input type parameter is set to Integer, then valid input values
are 0, 1, 2, and 3. In this case, the input can be either a scalar or a
frame-based column vector.

If the Input type parameter is set to Bit, then the input must be a
binary-valued vector. In this case, the input can be either a vector of
length two or a frame-based column vector whose length is an even
integer.

For integer inputs, the block can accept the data types int8, uint8,
int16, uint16, int32, uint32, single, and double. For bit inputs, the
block can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

The symbol period is half the input period. The first output symbol is an
initial condition of zero that is unrelated to the input values.

The constellation used to map bit pairs to symbols is in the figure below.
If the block’s Phase offset parameter is nonzero, then this constellation
is rotated by that parameter value.
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## "#

Frame-Based Inputs

If the input is a frame-based column vector, then the block processes
several integers or several pairs of bits in each time step. In this case,
the output sample time equals the input sample time, even though
the period of each output symbol is half the period of each integer or
bit pair in the input.

Delays

The modulator-demodulator pair incurs a delay, as described in “Delays
in Digital Modulation”.
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Dialog
Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Phase offset (rad)
The amount by which the phase of the zeroth point of the signal
constellation is shifted from π/4.

Output data type
The output data type can be either single or double. By default,
the block sets this to double.

Pair Block OQPSK Demodulator Baseband

See Also QPSK Modulator Baseband
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OVSF Code Generator

Purpose Generate orthogonal variable spreading factor (OVSF) code from set
of orthogonal codes

Library Spreading Codes

Description The OVSF Code Generator block generates an OVSF code from a
set of orthogonal codes. OVSF codes were first introduced for 3G
communication systems. OVSF codes are primarily used to preserve
orthogonality between different channels in a communication system.

OVSF codes are defined as the rows of an N-by-N matrix, CN, which is
defined recursively as follows. First, define C1 = [1]. Next, assume that
CN is defined and let CN(k) denote the kth row of CN. Define C2N by
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Note that CN is only defined for N a power of 2. It follows by induction
that the rows of CN are orthogonal.

The OVSF codes can also be defined recursively by a tree structure,
as shown in the following figure.
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If [C] is a code length 2r at depth r in the tree, where the root has depth
0, the two branches leading out of C are labeled by the sequences [C C]
and [C -C], which have length 2r+1. The codes at depth r in the tree are
the rows of the matrix CN, where N = 2r.

Note that two OVSF codes are orthogonal if and only if neither code lies
on the path from the other code to the root. Since codes assigned to
different users in the same cell must be orthogonal, this restricts the
number of available codes for a given cell. For example, if the code C41
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in the tree is assigned to a user, the codes C10, C20, C82, C83, and so on,
cannot be assigned to any other user in the same cell.

Block Parameters

You specify the code the OVSF Code Generator block outputs by two
parameters in the block’s dialog: the Spreading factor, which is the
length of the code, and the Code index, which must be an integer in
the range [0, 1, ... , N - 1], where N is the spreading factor. If the code
appears at depth r in the preceding tree, the Spreading factor is 2r.
The Code index specifies how far down the column of the tree at depth
r the code appears, counting from 0 to N - 1. For CN, k in the preceding
diagram, N is the Spreading factor and k is the Code index.

You can recover the code from the Spreading factor and the Code
index as follows. Convert the Code index to the corresponding binary
number, and then add 0s to the left, if necessary, so that the resulting
binary sequence x1 x2 ... xr has length r, where r is the logarithm base 2
of the Spreading factor. This sequence describes the path from the
root to the code. The path takes the upper branch from the code at
depth i if xi = 0, and the lower branch if xi = 1.

To reconstruct the code, recursively define a sequence of codes Ci for as
follows. Let C0 be the root [1]. Assuming that Ci has been defined, for
i < r, define Ci+1 by

C
C C x
C C xi

i i i

i i i
+ =

=
− =

⎧
⎨
⎩

1
0
1

if 
if ( )

The code CN has the specified Spreading factor and Code index.

For example, to find the code with Spreading factor 16 and Code
index 6, do the following:

1 Convert 6 to the binary number 110.

2 Add one 0 to the left to obtain 0110, which has length 4 = log2 16.

3 Construct the sequences Ci according to the following table.
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i xi Ci

0 C0 = [1]

1 0 C1 = C0 C0 = [1] [1]

2 1 C2 = C1 -C1 = [1 1] [-1 -1]

3 1 C3 = C2 -C2 = [1 1 -1 -1] [-1 -1 1 1]

4 0 C4 = C3 C3 = [1 1 -1 -1 -1 -1 1 1] [1 1 -1 -1 -1 -1 1 1]

The code C4 has Spreading factor 16 and Code index 6.

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.
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Spreading factor
Positive integer that is a power of 2, specifying the length of the
code.

Code index
Integer in the range [0, 1, ... , N - 1] specifying the code, where N
is the Spreading factor.

Sample time
A positive real scalar specifying the sample time of the output
signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

See Also Hadamard Code Generator, Walsh Code Generator
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Phase/Frequency Offset

Purpose Apply phase and frequency offsets to complex baseband signal.

Library RF Impairments

Description The Phase/Frequency Offset block first applies a phase offset and then
a frequency offset to a complex, baseband signal. The block performs
these operations in the subsystem shown in the following diagram,
which you can view by right-clicking the block and selecting Look
under mask:

You can view the implementation of the phase or frequency offsets by
double-clicking the Phase Offset or Frequency Offset subsystems under
the mask.

Phase Offset

The block applies a phase offset to the input signal, specified by the
Phase offset (deg) parameter.

Frequency Offset

The block applies a frequency offset to the signal that is specified by the
Frequency offset (Hz) parameter.

The effects of changing the block’s parameters are illustrated by the
following scatter plots of a signal modulated by 16-ary quadrature
amplitude modulation (QAM). The usual 16-ary QAM constellation
without the effect of the Phase/Frequency Offset block is shown in the
first scatter plot:
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The following figure shows a scatter plot of an output signal, modulated
by 16-ary QAM, from the Phase/Frequency Offset block with Phase
offset (deg) set to 20 and Frequency offset (Hz) set to 0:
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Observe that each point in the constellation is rotated by a 20 degree
angle counterclockwise.

If you set Frequency offset (Hz) to 2 and Phase offset (deg) to 0,
the angles of points in the constellation change linearly over time.
This causes points in the scatter plot to shift radially, as shown in the
following figure:
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Note that every point in the scatter plot has magnitude equal to a point
in the original constellation.

See “Scatter Plot Examples” for a description of the model that
generates this plot.
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Dialog
Box

Frequency offset (hz)
Scalar specifying the frequency offset in Hertz.

Phase offset (deg)
Scalar specifying the phase offset in degrees.

See Also Phase Noise
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Purpose Implement phase-locked loop to recover phase of input signal

Library Components sublibrary of Synchronization

Description The Phase-Locked Loop (PLL) block is a feedback control system that
automatically adjusts the phase of a locally generated signal to match
the phase of an input signal. This block is most appropriate when the
input is a narrowband signal.

This PLL has these three components:

• A multiplier used as a phase detector.

• A filter. You specify the filter’s transfer function using the Lowpass
filter numerator and Lowpass filter denominator parameters.
Each is a vector that gives the respective polynomial’s coefficients in
order of descending powers of s.

To design a filter, you can use functions such as butter, cheby1,
and cheby2 in the Signal Processing Toolbox. The default filter is
a Chebyshev type II filter whose transfer function arises from the
command below.

[num, den] = cheby2(3,40,100,'s')

• A voltage-controlled oscillator (VCO). You specify characteristics of
the VCO using the VCO quiescent frequency, VCO initial phase,
and VCO output amplitude parameters.

The input signal represents the received signal. The input must be a
sample-based scalar signal. The three output ports produce:

• The output of the filter

• The output of the phase detector

• The output of the VCO
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Dialog
Box

Lowpass filter numerator
The numerator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

Lowpass filter denominator
The denominator of the lowpass filter’s transfer function,
represented as a vector that lists the coefficients in order of
descending powers of s.

VCO input sensitivity (Hz/V)
This value scales the input to the VCO and, consequently, the
shift from the VCO quiescent frequency value. The units of
VCO input sensitivity are Hertz per volt.

VCO quiescent frequency (Hz)
The frequency of the VCO signal when the voltage applied to it is
zero. This should match the carrier frequency of the input signal.
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VCO initial phase (rad)
The initial phase of the VCO signal.

VCO output amplitude
The amplitude of the VCO signal.

See Also Baseband PLL, Linearized Baseband PLL, Charge Pump PLL

References For more information about phase-locked loops, see the works
listed in “Selected Bibliography for Synchronization” in Using the
Communications Blockset.
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Purpose Apply receiver phase noise to complex baseband signal

Library RF Impairments

Description The Phase Noise block appies phase noise to a complex, baseband
signal. The block applies the phase noise as follows:

1 Generates additive white Gaussian noise (AWGN) and filters it with
a digital filter.

2 Adds the resulting noise to the angle component of the input signal.

You can view the block’s implementation of phase noise by right-clicking
on the block and selecting Look under mask. This displays the
following figure:

You can view the construction of the Noise Source subsystem by
double-clicking it.

The effects of changing the block’s parameters are illustrated by the
following scatter plots of a signal modulated by 16-ary quadrature
amplitude modulation (QAM). The usual 16-ary QAM constellation
without distortion is shown in the first scatter plot:
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The following figure shows a scatter plot of an output signal, modulated
by 16-ary QAM, from the Phase Noise block with Phase noise level
(dBc/Hz) set to -70 and Frequency offset (Hz) set to 100:
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This plot is generated by the model described in “Scatter Plot Examples”
with the following parameter settings for the Rectangular QAM
Modulator Baseband block:

• Normalization method set to Average Power

• Average power (watts) set to 1e-12
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Dialog
Box

Phase noise level (dBc/Hz)
Scalar specifying the phase noise level.

Frequency offset (Hz)
Scalar specifying the frequency offset in Hertz.

Initial seed
Nonnegative integer specifying the initial seed for the random
number generator the block uses to generate noise.

See Also Phase/Frequency Offset

References [1] Kasdin, N.J., "Discrete Simulation of Colored Noise and Stochastic
Processes and 1/(f^alpha); Power Law Noise Generation," The
Proceedings of the IEEE, May, 1995, Vol. 83, No. 5
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PM Demodulator Passband

Purpose Demodulate PM-modulated data

Library Analog Passband Modulation, in Modulation

Description The PM Demodulator Passband block demodulates a signal that
was modulated using phase modulation. The input is a passband
representation of the modulated signal. Both the input and output
signals are real sample-based scalar signals.

For best results, use a carrier frequency which is estimated to be
larger than 10% of your input signal’s sample time. This is due to the
implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000
samples per second. We then designate a Hilbert Transform filter of
order 100. Below is the response of the Hilbert Transform filter as
returned by fvtool.
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Note the bandwidth of the filter’s magnitude response. By choosing
a carrier frequency larger than 10% (but less than 90%) of the input
signal’s sample time (8000 samples per second, in this example) or
equivalently, a carrier frequency larger than 400Hz, we ensure that
the Hilbert Transform Filter will be operating in the flat section of the
filter’s magnitude response (shown in blue), and that our modulated
signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.
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This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Frequency deviation (Hz)
The phase deviation of the carrier frequency in radians.
Sometimes it is referred to as the "variation" in the phase.

Hilbert transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block PM Modulator Passband
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Purpose Modulate using phase modulation

Library Analog Passband Modulation, in Modulation

Description The PM Modulator Passband block modulates using phase modulation.
The output is a passband representation of the modulated signal. The
output signal’s frequency varies with the input signal’s amplitude. Both
the input and output signals are real sample-based scalar signals.

If the input is u(t) as a function of time t, then the output is

cos( ( ) )2π θf t K u tc c+ +

where fc is the Carrier frequency parameter, θ is the Initial phase
parameter, and Kc is the Modulation constant parameter.

An appropriate Carrier frequency value is generally much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box
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Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The initial phase of the carrier in radians.

Phase deviation
The phase deviation of the carrier frequency in radians. This is
sometimes referred to as the "variation" in the phase.

Pair Block PM Demodulator Passband
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PN Sequence Generator

Purpose Generate pseudonoise sequence

Library Sequence Generators sublibrary of Comm Sources

Description The PN Sequence Generator block generates a sequence of
pseudorandom binary numbers. A pseudonoise sequence can be used in
a pseudorandom scrambler and descrambler. It can also be used in a
direct-sequence spread-spectrum system.

The PN Sequence Generator block uses a shift register to generate
sequences, as shown below.

���#

��# ��+ "

�� ���+

%��# %��+ %"

�# �"

8
�	
�

��� ��� ���

���#

��# ��+ "

�� ���+

%��# %��+ %"

�# �"

8
�	
�

��� ��� ���

All r registers in the generator update their values at each time step
according to the value of the incoming arrow to the shift register. The
adders perform addition modulo 2. The shift register is described by
the Generator Polynomial parameter, which is a primitive binary
polynomial in z, grz

r+gr-1z
r-1+gr-2z

r-2+...+g0. The coefficient gk is 1 if
there is a connection from the kth register, as labeled in the preceding
diagram, to the adder. The leading term gr and the constant term g0 of
the Generator Polynomial parameter must be 1.
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You can specify the Generator polynomial parameter using either of
these formats:

• A vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the
length of this vector is one more than the degree of the generator
polynomial.

• A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 0 0 0 0 0 1 0 1] and [8 2 0] represent the same
polynomial, p(z) = z8 + z2 + 1.

The Initial states parameter is a vector specifying the initial values of
the registers. The Initial states parameter must satisfy these criteria:

• All elements of the Initial states vector must be binary numbers.

• The length of the Initial states vector must equal the degree of the
generator polynomial.

Note At least one element of the Initial states vector must be
nonzero in order for the block to generate a nonzero sequence. That
is, the initial state of at least one of the registers must be nonzero.

For example, the following table indicates two sets of parameter values
that correspond to a generator polynomial of p(z) = z8 + z2 + 1.

Quantity Example 1 Example 2

Generator
polynomial

g1 = [1 0 0 0 0 0 1 0
1]

g2 = [8 2 0]

2-433



PN Sequence Generator

Quantity Example 1 Example 2

Degree of
generator
polynomial

8, which is length(g1)-1 8

Initial states [1 0 0 0 0 0 1 0] [1 0 0 0 0 0 1 0]

The Shift parameter shifts the starting point of the output sequence.
With the default setting for this parameter, the only connection is along
the arrow labeled m0, which corresponds to a shift of 0. The parameter
is described in greater detail below.

You can shift the starting point of the PN sequence with the Shift
parameter. You can specify the parameter in either of two ways:

• An integer representing the length of the shift

• A binary vector, called the mask vector, whose length is equal to the
degree of the generator polynomial

The difference between the block’s output when you set Shift (or
mask) to 0, versus a positive integer d, is shown in the following table.

T = 0 T = 1 T = 2 ... T = d
T =
d+1

Shift = 0 x0 x1 x2 ... xd xd+1

Shift = d xd xd+1 xd+2 ... x2d x2d+1

Alternatively, you can set the Shift parameter to a binary vector,
corresponding to a polynomial in z, mr-1z

r-1 + mr-2z
r-2 + ... + m1z + m0, of

degree at most r-1. The mask vector corresponding to a shift of d is the
vector that represents m(z) = zd modulo g(z), where g(z) is the generator
polynomial. For example, if the degree of the generator polynomial is
4, then the mask vector corresponding to d = 2 is [0 1 0 0], which
represents the polynomial m(z) = z2. The preceding schematic diagram
shows how the Shift (or mask) parameter is implemented when
you specify it as a mask vector. The default setting for the Shift (or
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mask) parameter is [0 0 0 1], which corresponds to d = 0. You can
calculate the mask vector using the Communications Toolbox function
shift2mask.

You can use an external signal to reset the values of the internal shift
register to the initial state by selecting the Reset on nonzero input
check box. This creates an input port for the external signal in the PN
Sequence Generator block. The way the block resets the internal shift
register depends on whether its output signal and the reset signal are
sample-based or frame-based. The following example demonstrates
the possible alternatives.

Example: Resetting a Signal

Suppose that the PN Sequence Generator block outputs [1 0 0 1 1 0
1 1] when there is no reset. You then select the Reset on nonzero
input check box and input a reset signal [0 0 0 1]. The following table
shows three possibilities for the properties of the reset signal and the
PN Sequence Generator block.

Reset Signal
Properties

PN Sequence
Generator
block

Reset Signal, Output
Signal

Sample-based

Sample time = 1

Sample-based

Sample time = 1 " " " #

�����

# " " # " " # # " # #
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Reset Signal
Properties

PN Sequence
Generator
block

Reset Signal, Output
Signal

Frame-based

Sample time =1

Samples per
frame = 2

Frame-based

Sample time = 1

Samples per
frame = 2

" " " #

�����

# " " # " " # # " # #

Sample-based

Sample time = 2

Samples per
frame = 1

Frame-based

Sample time = 1

Samples per
frame = 2

" #

�����

# "

"

""

"

# " # " " # # " # #

In the first two cases, the PN sequence is reset at the fourth bit, because
the fourth bit of the reset signal is a 1 and the Sample time is 1. Note
that in the second case, the frame sizes are 2, and the reset occurs at
the end of the second frame.

In the third case, the PN sequence is reset at the seventh bit. This is
because the reset signal has Sample time 2, so the reset bit is first
sampled at the seventh bit. With these settings, the reset always occurs
at the beginning of a frame.

Attributes of Output Signal

If the Frame-based outputs box is selected, the output signal is a
frame-based column vector whose length is the Samples per frame
parameter. Otherwise, the output signal is a one-dimensional scalar.

Sequences of Maximum Length

If you want to generate a sequence of the maximum possible length
for a fixed degree, r, of the generator polynomial, you can set
Generator polynomial to a value from the following table. See [1]
for more information about the shift-register configurations that these
polynomials represent.
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r
Generator
Polynomial r Generator Polynomial

2 [2 1 0] 21 [21 19 0]

3 [3 2 0] 22 [22 21 0]

4 [4 3 0] 23 [23 18 0]

5 [5 3 0] 24 [24 23 22 17 0]

6 [6 5 0] 25 [25 22 0]

7 [7 6 0] 26 [26 25 24 20 0]

8 [8 6 5 4 0] 27 [27 26 25 22 0]

9 [9 5 0] 28 [28 25 0]

10 [10 7 0] 29 [29 27 0]

11 [11 9 0] 30 [30 29 28 7 0]

12 [12 11 8 6 0] 31 [31 28 0]

13 [13 12 10 9 0] 32 [32 31 30 10 0]

14 [14 13 8 4 0] 33 [33 20 0]

15 [15 14 0] 34 [34 15 14 1 0]

16 [16 15 13 4 0] 35 [35 2 0]

17 [17 14 0] 36 [36 11 0]

18 [18 11 0] 37 [37 12 10 2 0]

19 [19 18 17 14 0] 38 [38 6 5 1 0]

20 [20 17 0] 39 [39 8 0]

40 [40 5 4 3 0] 47 [47 14 0]

41 [41 3 0] 48 [48 28 27 1 0]

42 [42 23 22 1 0] 49 [49 9 0]

43 [43 6 4 3 0] 50 [50 4 3 2 0]

44 [44 6 5 2 0] 51 [51 6 3 1 0]
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r
Generator
Polynomial r Generator Polynomial

45 [45 4 3 1 0] 52 [52 3 0]

46 [46 21 10 1 0] 53 [53 6 2 1 0]

Dialog
Box Opening this dialog box causes a running simulation to pause.

See “Changing Source Block Parameters” in the online Simulink
documentation for details.
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Generator polynomial
Polynomial that determines the shift register’s feedback
connections.

Initial states
Vector of initial states of the shift registers.

Shift (or mask)
Integer scalar or binary vector that determines the delay of the
PN sequence from the initial time. If you specify the shift as a
binary vector, the vector’s length must equal the degree of the
generator polynomial.

Sample time
Period of each element of the output signal.

Frame-based outputs
Determines whether the output is frame-based or sample-based.

Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.

Reset on nonzero input
When selected, you can specify an input signal that resets the
internal shift registers to the original values of the Initial states
parameter.

Output data type
The output type of the block can be specified as a boolean or
double. By default, the block sets this to double.

See Also Kasami Sequence Generator, Scrambler

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.

[2] Lee, J. S., and L. E. Miller, CDMA Systems Engineering Handbook,
Artech House, 1998.
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[3] Golomb, S.W., Shift Register Sequences, Aegean Park Press, 1967.
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Poisson Integer Generator

Purpose Generate Poisson-distributed random integers

Library Data Sources sublibrary of Comm Sources

Description The Poisson Integer Generator block generates random integers using
a Poisson distribution. The probability of generating a nonnegative
integer k is

λ λk kexp( ) /( !)−

where λ is a positive number known as the Poisson parameter.

You can use the Poisson Integer Generator to generate noise in a binary
transmission channel. In this case, the Poisson parameter Lambda
should be less than 1, usually much less.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. Also, the shape (row or column) of
the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Lambda
The Poisson parameter λ. If it is a scalar, then every element in
the output vector shares the same Poisson parameter.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.
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Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

Output data type
The output type of the block can be specified as a double, int8,
uint8, int16, uint16, int32, or uint32. By default, the block
sets this to double.

See Also Random Integer Generator; poissrnd (Statistics Toolbox)
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Purpose Output elements which correspond to 1s in binary Puncture vector

Library Sequence Operations

Description The Puncture block creates an output vector by removing selected
elements of the input vector and preserving others. The input can be a
real or complex vector of length K. The block determines which elements
to remove or preserve by using the binary Puncture vector parameter:

• If Puncture vector(k) = 0, then the kth element of the input vector
does not become part of the output vector.

• If Puncture vector(k) = 1, then the kth element of the input vector
is preserved in the output vector.

Here, k is between 1 and K. The preserved elements appear in the
output vector in the same order in which they appear in the input vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of the
output will be the same as that of the input signal.

Frame-Based Processing

If the input is frame-based, then both it and the Puncture vector
parameter must be column vectors. The length of the Puncture vector
parameter must divide K. The block repeats the puncturing pattern,
if necessary, to cover all input elements. That is, in the bulleted items
above you can replace Puncture vector(k) by Puncture vector(n),
where

n = mod(k,length(Puncture vector))

and mod is the modulus function (mod in MATLAB).
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Dialog
Box

Puncture vector
A binary vector whose pattern of 0s (1s) indicates which elements
of the input the block should remove (preserve).

Examples If the Puncture vector parameter is the six-element vector
[1;0;1;1;1;0], then the block:

• Removes the second and sixth elements from the group of six input
elements.

• Sends the first, third, fourth, and fifth elements to the output vector.

The diagram below depicts the block’s operation on an input vector of
[1:6], using this Puncture vector parameter.
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See Also Insert Zero
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QPSK Demodulator Baseband

Purpose Demodulate QPSK-modulated data

Library PM, in Digital Baseband sublibrary of Modulation

Description The QPSK Demodulator Baseband block demodulates a signal that was
modulated using the quaternary phase shift keying method. The input
is a baseband representation of the modulated signal.

The input must be a discrete-time complex signal. The input can be
either a scalar or a frame-based column vector. The block accepts the
input data types single and double.

If the Output type parameter is set to Integer, then the block maps
the point

exp(jθ + jπm/2)

to m, where θ is the Phase offset parameter and m is 0, 1, 2, or 3.

If the Output type parameter is set to Bit, then the output contains
pairs of binary values. The reference page for theQPSK Modulator
Baseband block shows the signal constellations for the cases when the
Constellation ordering parameter is either Binary or Gray.
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Dialog
Box

Output type
Determines whether the output consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each integer to a pair of output
bits. This field is active only when Output type is set to Bit.

Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block QPSK Modulator Baseband

See Also M-PSK Demodulator Baseband, BPSK Demodulator Baseband, DQPSK
Demodulator Baseband
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Purpose Modulate using the quaternary phase shift keying method

Library PM in Digital Baseband sublibrary of Modulation

Description The QPSK Modulator Baseband block modulates using the quaternary
phase shift keying method. The output is a baseband representation of
the modulated signal.

Inputs and Constellation Types

If the Input type parameter is set to Integer, then valid input values
are 0, 1, 2, and 3. If the input is m, then the output symbol is

exp(jθ + jπm/2)

where θ is the Phase offset parameter. In this case, the input can be
either a scalar or a frame-based column vector.

For integer inputs, the block can accept the data types int8, uint8,
int16, uint16, int32, uint32, single, and double. For bit inputs, the
block can accept int8, uint8, int16, uint16, int32, uint32, boolean,
single, and double.

If the Input type parameter is set to Bit, then the input contains
pairs of binary values. The input can be either a vector of length two
or a frame-based column vector whose length is an even integer. If the
Phase offset parameter is set to pi/4, then the block uses one of the
signal constellations in the figure below, depending on whether the
Constellation ordering parameter is set to Binary or Gray.
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Dialog
Box

Input type
Indicates whether the input consists of integers or pairs of bits.

Constellation ordering
Determines how the block maps each pair of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.
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Phase offset (rad)
The phase of the zeroth point of the signal constellation.

Output data type
The output data type can be either single or double. By default,
the block sets this to double.

Pair Block QPSK Demodulator Baseband

See Also M-PSK Modulator Baseband, BPSK Modulator Baseband, DQPSK
Modulator Baseband
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Purpose Decode quantization index according to codebook

Library Source Coding

Description The Quantizing Decoder block converts quantization indices to the
corresponding codebook values. The Quantization codebook
parameter, a vector of length N, prescribes the possible output values.
If the input is an integer k between 0 and N-1, then the output is the
(k+1)st element of Quantization codebook.

The input can be either a scalar or a vector. The input must be
a discrete-time signal. This block processes each vector element
independently.

Note The Quantizing Encoder block also uses a Quantization
codebook parameter. The first output of that block corresponds to
the input of Quantizing Decoder, while the second output of that block
corresponds to the output of Quantizing Decoder.

Dialog
Box

Quantization codebook
A real vector that prescribes the output value corresponding to
each nonnegative integer of the input.
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Pair Block Quantizing Encoder

See Also Scalar Quantizer (Signal Processing Blockset)
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Purpose Quantize signal using partition and codebook

Library Source Coding

Description The Quantizing Encoder block quantizes the input signal according to
the Partition vector and encodes the input signal according to the
Codebook vector. The input signal can be either a scalar or a vector.
This block processes each vector element independently.

The first output is the quantization index. The second output is the
quantized signal. The values for the quantized signal are taken from
the Codebook vector.

The Quantization partition parameter, P, is a real vector of length n
whose entries are in strictly ascending order. The quantization index
(second output signal value) corresponding to an input value of x is

• 0 if x P(1)

• m if P(m) < x P(m+1)

• n if P(n) < x

The Quantization codebook parameter, whose length is n+1,
prescribes a value for each partition in the quantization. The first
element of Quantization codebook is the value for the interval
between negative infinity and the first element of P. The second output
signal from this block contains the quantization of the input signal
based on the quantization indices and prescribed values.

You can use the function lloyds in the Communications Toolbox
with a representative sample of your data as training data, to obtain
appropriate partition and codebook parameters.
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Dialog
Box

Quantization partition
The vector of endpoints of the partition intervals.

Quantization codebook
The vector of output values assigned to each partition.

Pair Block Quantizing Decoder

See Also Scalar Quantizer (Signal Processing Blockset), lloyds (Communications
Toolbox)

2-455



Raised Cosine Receive Filter

Purpose Filter input signal, possibly downsampling, using raised cosine FIR
filter

Library Comm Filters

Description The Raised Cosine Receive Filter block filters the input signal using
a normal raised cosine FIR filter or a square root raised cosine FIR
filter. It also downsamples the filtered signal if you set the Output
mode parameter to Downsampling. The block’s icon shows the filter’s
impulse response."

Characteristics of the Filter

Characteristics of the raised cosine filter are the same as in theRaised
Cosine Transmit Filter block, except that the length of the filter’s input
response has a slightly different expression: 2 * N * Group delay + 1,
where N is the value of the Input samples per symbol parameter
(not the Upsampling factor parameter, as in the case of the Raised
Cosine Transmit Filter block).

If the Filter gain parameter is chosen to be User-specified, then
the passband gain of the filter is:

• 20 10log ( ( )Input samples per symbol Linear amplitude filteN × rr gain)
for a normal filter.

• 20 10log ( ( )Input samples per symbol Linear amplitude filteN × rr gain)
for a square root filter.

Downsampling the Filtered Signal

To have the block downsample the filtered signal, set the Output
mode parameter to Downsampling. If L is the Downsampling factor
parameter value, then the block retains 1/L of the samples, choosing
them as follows:

• If the Sample offset parameter is zero, then the block selects the
samples of the filtered signal indexed by 1, L+1, 2*L+1, 3*L+1, etc.
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• If the Sample offset parameter is a positive integer less than L, then
the block initially discards that number of samples from the filtered
signal and downsamples the remaining data as in the case above.

To preserve the entire filtered signal and avoid downsampling, set
Output mode to None. This setting is appropriate, for example, when
the output from the filter block forms the input to a timing phase
recovery block such as Squaring Timing Recovery. The timing phase
recovery block performs the downsampling in that case.

Input and Output Signals

The input signal must be a scalar or a frame-based column vector.
double, single, and fixed-point data types are supported. Set the
Input sampling mode parameter according to whether the input is
sample-based or frame-based.

If Output mode is set to None, then the input and output signals share
the same sampling mode, sample time, and vector length.

If Output mode is set to Downsampling and Downsampling factor
is L, then L and the input sampling mode determine characteristics
of the output signal:

• If the input is sample-based, then the output is sample-based and the
output sample time is 1/L times the input sample time.

• If the input is frame-based, then the output is a frame-based vector
whose length is 1/L times the length of the input vector. The output
frame period equals the input frame period.

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block
designs, select Export filter coefficients to workspace. Then set
the Coefficient variable name parameter to the name of a variable
that you want the block to create in the MATLAB workspace. Running
the simulation causes the block to create the variable, overwriting any
previous contents in case the variable already exists.
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Dialog
Box

Filter type
The type of raised cosine filter: Square root or Normal.

Input samples per symbol
An integer greater than 1 representing the number of samples
per symbol in the input signal.

Group delay
A positive integer that represents the number of symbol periods
between the start of the filter response and its peak.

Rolloff factor
The rolloff factor for the filter, a real number between 0 and 1.
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Input sampling mode
The type of input signal: Frame-based or Sample-based.

Output mode
Determines whether or not the block downsamples the signal
after filtering. Choices are Downsampling and None.

Downsampling factor
The factor by which the block downsamples the signal after
filtering. This field appears only if Output mode is set to
Downsampling.

Sample offset
The number of filtered samples the block discards before
downsampling. This field appears only if Output mode is set
to Downsampling.

Filter gain
Determines how the block scales the filter coefficients. Choices
are Normalized and User-specified.

Linear amplitude filter gain
A positive scalar used to scale the filter coefficients. This field
appears only if Filter gain is set to User-specified.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the
MATLAB workspace that contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace.
This field appears only if Export filter coefficients to
workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter
Visualization Tool, fvtool, to analyze the raised cosine filter
whenever you apply any changes to the block’s parameters. If you
launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a
new fvtool in order to see the new filter characteristics. Also

2-459



Raised Cosine Receive Filter

note that if you have launched fvtool, then it will remain open
even after the model is closed.

Pair Block Raised Cosine Transmit Filter

See Also Gaussian Filter, rcosine, rcosflt
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Purpose Upsample and filter input signal using raised cosine FIR filter

Library Comm Filters

Description The Raised Cosine Transmit Filter block upsamples and filters the input
signal using a normal raised cosine FIR filter or a square root raised
cosine FIR filter. The block’s icon shows the filter’s impulse response."

Characteristics of the Filter

The Filter type parameter determines which type of filter the block
uses; choices are Normal and Square root.

The impulse response of a normal raised cosine filter with rolloff factor
R and symbol period T is

h t
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The impulse response of a square root raised cosine filter with rolloff
factor R is
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The impulse response of a square root raised cosine filter convolved
with itself is approximately equal to the impulse response of a normal
raised cosine filter.

The Group delay parameter is the number of symbol periods between
the start of the filter’s response and the peak of the filter’s response.
The group delay and the upsampling factor, N, determine the length of
the filter’s impulse response, which is 2 * N * Group delay + 1.

The Rolloff factor parameter is the filter’s rolloff factor. It must be a
real number between 0 and 1. The rolloff factor determines the excess
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bandwidth of the filter. For example, a rolloff factor of .5 means that the
bandwidth of the filter is 1.5 times the input sampling frequency.

The Filter gain parameter indicates how the block normalizes the
filter coefficients. If you choose Normalized, then the block uses an
automatic scaling:

• If Filter type is Normal, then the block normalizes the filter
coefficients so that the peak coefficient equals 1.

• If Filter type is Square root, then the block normalizes the filter
coefficients so that the convolution of the filter with itself produces a
normal raised cosine filter whose peak coefficient equals 1.

If the Filter gain parameter is chosen to be User-specified, then
the passband gain of the filter is:

• 20 10log ( ( ) )Upsampling factor Linear amplitude filter gainN × for
a normal filter.

• 20 10log ( ( ) )Upsampling factor Linear amplitude filter gainN × for
a square root filter.

Input and Output Signals

The input signal must be a scalar or a frame-based column vector.
double, single, and fixed-point data types are supported. Set the
Input sampling mode parameter according to whether the input is
sample-based or frame-based.

The input sampling mode and N, the value of the Upsampling factor
parameter, determine characteristics of the output signal:

• If the input is a sample-based scalar, then the output is a
sample-based scalar and the output sample time is N times the input
sample time.
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• If the input is frame-based, then the output is a frame-based vector
whose length is N times the length of the input vector. The output
frame period equals the input frame period.

Exporting Filter Coefficients to the MATLAB Workspace

To examine or manipulate the coefficients of the filter that this block
designs, select Export filter coefficients to workspace. Then set
the Coefficient variable name parameter to the name of a variable
that you want the block to create in the MATLAB workspace. Running
the simulation causes the block to create the variable, overwriting any
previous contents in case the variable already exists.

Dialog
Box

Filter type
The type of raised cosine filter: Square root or Normal.
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Group delay
A positive integer that represents the number of symbol periods
between the start of the filter response and its peak.

Rolloff factor
The rolloff factor for the filter, a real number between 0 and 1.

Input sampling mode
The type of input signal: Frame-based or Sample-based.

Upsampling factor
An integer greater than 1 representing the number of samples per
symbol in the filtered output signal.

Filter gain
Determines how the block scales the filter coefficients. Choices
are Normalized and User-specified.

Linear amplitude filter gain
A positive scalar used to scale the filter coefficients. This field
appears only if Filter gain is set to User-specified.

Export filter coefficients to workspace
If you check this box, then the block creates a variable in the
MATLAB workspace that contains the filter coefficients.

Coefficient variable name
The name of the variable to create in the MATLAB workspace.
This field appears only if Export filter coefficients to
workspace is selected.

Visualize filter with FVTool
If you click this button, then MATLAB launches the Filter
Visualization Tool, fvtool, to analyze the raised cosine filter
whenever you apply any changes to the block’s parameters. If you
launch fvtool for the filter, and subsequently change parameters
in the mask, fvtool will not update. You will need to launch a
new fvtool in order to see the new filter characteristics. Also
note that if you have launched fvtool, then it will remain open
even after the model is closed.
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Pair Block Raised Cosine Receive Filter

See Also Gaussian Filter, rcosine, rcosflt
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Random Deinterleaver

Purpose Restore ordering of input symbols using random permutation

Library Block sublibrary of Interleaving

Description The Random Deinterleaver block rearranges the elements of its input
vector using a random permutation. The Initial seed parameter
initializes the random number generator that the block uses to
determine the permutation. If this block and theRandom Interleaver
block have the same value for Initial seed, then the two blocks are
inverses of each other.

The Number of elements parameter indicates how many numbers
are in the input vector. If the input is frame-based, then it must be a
column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

Dialog
Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block Random Interleaver
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See Also General Block Deinterleaver
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Purpose Generate integers randomly distributed in range [0, M-1]

Library Data Sources sublibrary of Comm Sources

Description The Random Integer Generator block generates uniformly distributed
random integers in the range [0, M-1], where M is the M-ary number
defined in the dialog box.

The M-ary number can be either a scalar or a vector. If it is a scalar,
then all output random variables are independent and identically
distributed (i.i.d.). If the M-ary number is a vector, then its length
must equal the length of the Initial seed; in this case each output
has its own output range.

If the Initial seed parameter is a constant, then the resulting noise is
repeatable.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. Also, the shape (row or column) of
the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

M-ary number
The positive integer, or vector of positive integers, that indicates
the range of output values.

Initial seed
The initial seed value for the random number generator. The
vector length of the seed determines the length of the output
vector.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.
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Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

Output data type
The output type of the block can be specified as a boolean, int8,
uint8, int16, uint16, int32, uint32, single, or double. By
default, the block sets this to double. Single outputs may lead
to different results when compared with double outputs for the
same set of parameters. For Boolean typed outputs, the M-ary
number must be 2.

See Also randint (Communications Toolbox)
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Purpose Reorder input symbols using random permutation

Library Block sublibrary of Interleaving

Description The Random Interleaver block rearranges the elements of its input
vector using a random permutation. The Number of elements
parameter indicates how many numbers are in the input vector. If the
input is frame-based, then it must be a column vector.

The block can accept the data types int8, uint8, int16, uint16, int32,
uint32, boolean, single, double, and fixed-point. The data type of this
output will be the same as that of the input signal.

The Initial seed parameter initializes the random number generator
that the block uses to determine the permutation. The block is
predictable for a given seed, but different seeds produce different
permutations.

Dialog
Box

Number of elements
The number of elements in the input vector.

Initial seed
The initial seed value for the random number generator.

Pair Block Random Deinterleaver
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See Also General Block Interleaver
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Rayleigh Noise Generator

Purpose Generate Rayleigh distributed noise

Library Noise Generators sublibrary of Comm Sources

Description The Rayleigh Noise Generator block generates Rayleigh distributed
noise. The Rayleigh probability density function is given by
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where σ2 is known as the fading envelope of the Rayleigh distribution.

The block requires you to specify the Initial seed for the random
number generator. If it is a constant, then the resulting noise is
repeatable. The sigma parameter can be either a vector of the same
length as the Initial seed, or a scalar. When sigma is a scalar, every
element of the output signal shares that same value.

Initial Seed

The Initial seed parameter initializes the random number generator
that the Rayleigh Noise Generator block uses to add noise to the input
signal. For best results, the Initial seed should be a prime number
greater than 30. Also, if there are other blocks in a model that have
an Initial seed parameter, you should choose different initial seeds
for all such blocks.

You can choose seeds for the Rayleigh Noise Generator block using the
Communications Blockset’srandseed function. At the MATLAB prompt,
enter

randseed

This returns a random prime number greater than 30. Entering
randseed again produces a different prime number. If you supply an
integer argument, randseed always returns the same prime for that
integer. For example, randseed(5) always returns the same answer.
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Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. Also, the shape (row or column) of
the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal.

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Sigma
Specify σ as defined in the Rayleigh probability density function.
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Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.

Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

See Also Multipath Rayleigh Fading Channel; raylrnd (Statistics Toolbox)

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.
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Purpose Apply receiver thermal noise to complex baseband signal

Library RF Impairments

Description The Receiver Thermal Noise block simulates the effects of thermal
noise on a complex, baseband signal. You can specify the amount of
thermal noise in three ways, according to which Specification method
you select:

• Noise temperature specifies the noise in degrees Kelvin.

• Noise factor specifies the noise as 1+(Noise temperature / 290).

• Noise figure specifies the noise as 10*log10(1+(Noise
temperature / 290)). This is the decibel equivalent of Noise factor.

The following scatter plot shows the effect of the Receiver Thermal
Noise block, with Specification method set to Noise figure and
Noise figure (dB) set to 3.01, on a signal modulated by 16-QAM.
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This plot is generated by the model described in “Scatter Plot Examples”
with the following parameter settings:

• Rectangular QAM Modulator Baseband

- Normalization method set to Average Power

- Average power (watts) set to 1e-12

• Receiver Thermal Noise

- Specification method set to Noise figure

- Noise figure (dB) set to 3.01

Dialog
Box

Specification method
The method by which you specify the amount of noise. The choices
are Noise temperature, Noise figure, and Noise factor.

Noise temperature (K)
Scalar specifying the amount of noise in degrees Kelvin.
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Noise figure
Scalar specifying the amount of noise in decibels relative to a
noise temperature of 290 degrees Kelvin. A Noise figure setting
of 0 dB indicates a noiseless system.

Noise factor
Scalar specifying the amount of noise relative to a noise
temperature of 290 degrees Kelvin.

Initial seed
The initial seed value for the random number generator that
generates the noise.

See Also Free Space Path Loss
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Purpose Demodulate rectangular-QAM-modulated data

Library AM, in Digital Baseband sublibrary of Modulation

Description The Rectangular QAM Demodulator Baseband block demodulates a
signal that was modulated using quadrature amplitude modulation
with a constellation on a rectangular lattice.

The signal constellation has M points, where M is the M-ary number
parameter. M must have the form 2K for some positive integer K.
The block scales the signal constellation based on how you set the
Normalization method parameter. For details, see the reference page
for theRectangular QAM Modulator Baseband block.

The input can be either a scalar or a frame-based column vector of data
types single or double.

Output Signal Values

The Output type parameter determines whether the block produces
integers or binary representations of integers. If Output type is set to
Integer, then the block produces integers. If Output type is set to Bit,
then the block produces a group of K bits, called a binary word, for each
symbol. The Constellation ordering parameter indicates how the
block assigns binary words to points of the signal constellation. More
details are on the reference page for theRectangular QAM Modulator
Baseband block.
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Dialog
Box

M-ary number
The number of points in the signal constellation. It must have the
form 2K for some positive integer K.

Output type
Indicates whether the output consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each integer to a group of output
bits. This field is active only when Output type is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices
are Min. distance between symbols, Average Power, and
Peak Power.

Minimum distance
The distance between two nearest constellation points. This
field appears only when Normalization method is set to Min.
distance between symbols.
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Average power (watts)
The average power of the symbols in the constellation. This field
appears only when Normalization method is set to Average
Power.

Peak power (watts)
The maximum power among the symbols in the constellation.
This field appears only when Normalization method is set to
Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Output data type
For integer outputs, this block can output the data types int8,
uint8, int16, uint16, int32, uint32, single, and double. For
bit outputs, output can be int8, uint8, int16, uint16, int32,
uint32, boolean, single, or double.

Pair Block Rectangular QAM Modulator Baseband

See Also General QAM Demodulator Baseband

References [1] Smith, Joel G., "Odd-Bit Quadrature Amplitude-Shift Keying," IEEE
Transactions on Communications, Vol. COM-23, March 1975, 385-389.
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Purpose Modulate using rectangular quadrature amplitude modulation

Library AM, in Digital Baseband sublibrary of Modulation

Description The Rectangular QAM Modulator Baseband block modulates using
M-ary quadrature amplitude modulation with a constellation on a
rectangular lattice. The output is a baseband representation of the
modulated signal.

Constellation Size and Scaling

The signal constellation has M points, where M is the M-ary number
parameter. M must have the form 2K for some positive integer K.
The block scales the signal constellation based on how you set the
Normalization method parameter. The table below lists the possible
scaling conditions.

Value of Normalization
method parameter Scaling Condition

Min. distance between
symbols

The nearest pair of points in the
constellation is separated by the
value of the Minimum distance
parameter.

Average Power The average power of the symbols
in the constellation is the
Average power parameter.

Peak Power The maximum power of the
symbols in the constellation is the
Peak power parameter.

Input Signal Values

The input and output for this block are discrete-time signals. The
Input type parameter determines whether the block accepts integers
between 0 and M-1, or binary representations of integers:
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• If Input type is set to Integer, then the block accepts integers. The
input can be either a scalar or a frame-based column vector, and can
accept the data types int8, uint8, int16, uint16, int32, uint32,
single, and double.

• If Input type is set to Bit, then the block accepts groups of K bits,
called binary words. The input can be either a vector of length K or
a frame-based column vector whose length is an integer multiple of
K. For bit inputs, the block can accept int8, uint8, int16, uint16,
int32, uint32, boolean, single, and double. The Constellation
ordering parameter indicates how the block assigns binary words
to points of the signal constellation. Such assignments apply
independently to the in-phase and quadrature components of the
input:

- If Constellation ordering is set to Binary, then the block uses a
natural binary-coded constellation.

- If Constellation ordering is set to Gray and K is even, then the
block uses a Gray-coded constellation.

- If Constellation ordering is set to Gray and K is odd, then the
block codes the constellation so that pairs of nearest points differ
in one or two bits. The constellation is cross-shaped, and the
schematic below indicates which pairs of points differ in two bits.
The schematic uses M = 128, but suggests the general case.
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For details about the Gray coding, see the reference page for theM-PSK
Modulator Baseband block and the paper among the references listed
below. Note that since the in-phase and quadrature components are
assigned independently, the Gray and binary orderings coincide when
M = 4.

Dialog
Box

M-ary number
The number of points in the signal constellation. It must have the
form 2K for some positive integer K.

Input type
Indicates whether the input consists of integers or groups of bits.

Constellation ordering
Determines how the block maps each group of input bits to a
corresponding integer. This field is active only when Input type
is set to Bit.

Normalization method
Determines how the block scales the signal constellation. Choices
are Min. distance between symbols, Average Power, and
Peak Power.
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Minimum distance
The distance between two nearest constellation points. This
field appears only when Normalization method is set to Min.
distance between symbols.

Average power (watts)
The average power of the symbols in the constellation. This field
appears only when Normalization method is set to Average
Power.

Peak power (watts)
The maximum power of the symbols in the constellation. This field
appears only when Normalization method is set to Peak Power.

Phase offset (rad)
The rotation of the signal constellation, in radians.

Output data type
The output data type can be either single or double.

Pair Block Rectangular QAM Demodulator Baseband

See Also General QAM Modulator Baseband

References [1] Smith, Joel G., "Odd-Bit Quadrature Amplitude-Shift Keying," IEEE
Transactions on Communications, Vol. COM-23, March 1975, 385-389.
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Purpose Decode trellis-coded modulation data, modulated using QAM method

Library Trellis-Coded Modulation

Description The Rectangular QAM TCM Decoder block uses the Viterbi algorithm
to decode a trellis-coded modulation (TCM) signal that was previously
modulated using a QAM signal constellation.

The M-ary number parameter is the number of points in the signal
constellation, which also equals the number of possible output symbols
from the convolutional encoder. (That is, log2(M-ary number) is the
number of output bit streams from the convolutional encoder.)

The Trellis structure and M-ary number parameters in this block
should match those in theRectangular QAM TCM Encoder block, to
ensure proper decoding.

Input and Output Signals

The input signal must be a frame-based column vector containing
complex numbers.

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the Rectangular QAM TCM Decoder block’s output
is a frame-based binary column vector whose length is k times the
vector length of the input signal.

Operation Modes

The block has three possible methods for transitioning between
successive frames. The Operation mode parameter controls which
method the block uses. This parameter also affects the range of possible
values for the Traceback depth parameter, D.

• In Continuous mode, the block initializes all state metrics to zero
at the beginning of the simulation, waits until it accumulates D
symbols, and then uses a sequence of D symbols to compute each of
the traceback paths. D can be any positive integer. At the end of
each frame, the block saves its internal state metric for use with
the next frame.
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If you select the Enable the reset input check box, the block
displays another input port, labeled Rst. This port receives an
integer scalar signal. Whenever the value at the Rst port is nonzero,
the block resets all state metrics to zero and sets the traceback
memory to zero.

• In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the lowest metric. D must be
less than or equal to the vector length of the input.

• In Terminated mode, the block treats each frame independently.
The traceback path always starts at the all-zeros state. D must be
less than or equal to the vector length of the input. If you know that
each frame of data typically ends at the all-zeros state, then this
mode is an appropriate choice.

Decoding Delay

If you set Operation mode to Continuous, then this block introduces
a decoding delay equal to Traceback depth*k bits, for a rate k/n
convolutional code. The decoding delay is the number of zeros that
precede the first decoded bit in the output.

The block incurs no delay for other values of Operation mode.
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

M-ary number
The number of points in the signal constellation.

Traceback depth
The number of trellis branches (equivalently, the number of
symbols) the block uses in the Viterbi algorithm to construct each
traceback path.

Operation mode
The operation mode of the Viterbi decoder. Choices are
Continuous, Truncated, and Terminated.

Enable the reset input port
When you check this box, the block has a second input port labeled
Rst. Providing a nonzero input value to this port causes the block
to set its internal memory to the initial state before processing the
input data. This option appears only if you set Operation mode
to Continuous.
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Pair Block Rectangular QAM TCM Encoder

See Also General TCM Decoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001.
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Purpose Convolutionally encode binary data and modulate using QAM method

Library Trellis-Coded Modulation

Description The Rectangular QAM TCM Encoder block implements trellis-coded
modulation (TCM) by convolutionally encoding the binary input signal
and mapping the result to a QAM signal constellation.

The M-ary number parameter is the number of points in the signal
constellation, which also equals the number of possible output symbols
from the convolutional encoder. (That is, log2(M-ary number) is equal
to n for a rate k/n convolutional code.)

Input and Output Signals

If the convolutional encoder described by the trellis structure represents
a rate k/n code, then the Rectangular QAM TCM Encoder block’s input
must be a frame-based binary column vector whose length is L*k for
some positive integer L.

The output from the Rectangular QAM TCM Encoder block is a
frame-based complex column vector of length L.

Specifying the Encoder

To define the convolutional encoder, use the Trellis structure
parameter. This parameter is a MATLAB structure whose format is
described in “Trellis Description of a Convolutional Encoder” in the
Communications Toolbox documentation. You can use this parameter
field in two ways:

• If you want to specify the encoder using its constraint length,
generator polynomials, and possibly feedback connection polynomials,
then use a poly2trellis command within the Trellis structure
field. For example, to use an encoder with a constraint length of 7,
code generator polynomials of 171 and 133 (in octal numbers), and
a feedback connection of 171 (in octal), set the Trellis structure
parameter to

poly2trellis(7,[171 133],171)
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• If you have a variable in the MATLAB workspace that contains
the trellis structure, then enter its name as the Trellis structure
parameter. This way is faster because it causes Simulink to spend
less time updating the diagram at the beginning of each simulation,
compared to the usage in the previous bulleted item.

Signal Constellations

The trellis-coded modulation technique partitions the constellation into
subsets called cosets, so as to maximize the minimum distance between
pairs of points in each coset. This block internally forms a valid partition
based on the value you choose for the M-ary number parameter.

The figures below show the labeled set-partitioned signal constellations
that the block uses when M-ary number is 16, 32, and 64. For
constellations of other sizes, see [1].
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder.

M-ary number
The number of points in the signal constellation.

Pair Block Rectangular QAM TCM Decoder

See Also General TCM Encoder, poly2trellis

References [1] Biglieri, E., D. Divsalar, P. J. McLane and M. K. Simon, Introduction
to Trellis-Coded Modulation with Applications, New York, Macmillan,
1991.

[2] Proakis, John G., Digital Communications, Fourth edition, New
York, McGraw-Hill, 2001
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Rician Fading Channel

Purpose Simulate Rician fading propagation channel

Library Channels

Description The Rician Fading Channel block implements a baseband simulation of
a Rician fading propagation channel. This block is useful for modeling
mobile wireless communication systems when the transmitted signal
can travel to the receiver along a dominant line-of-sight or direct path.
If the signal can travel along a line-of-sight path and also along other
fading paths, then you can use this block in parallel with the Multipath
Rayleigh Fading Channel block. For details about fading channels, see
the references listed below.

The input can be either a scalar or a frame-based column vector. The
input is a complex signal.

Fading causes the signal to spread and become diffuse. The K-factor
parameter, which is part of the statistical description of the Rician
distribution, represents the ratio between direct-path (unspread) power
and diffuse power. The ratio is expressed linearly, not in decibels. While
the Gain parameter controls the overall gain through the channel,
the K-factor parameter controls the gain’s partition into direct and
diffuse components.

Relative motion between the transmitter and receiver causes Doppler
shifts in the signal frequency. The Jakes PSD (power spectral density)
determines the spectrum of the Rician process.

The Sample time parameter is the time between successive elements
of the input signal. Note that if the input is a frame-based column
vector of length n, then the frame period (as the Simulink Probe block
reports, for example) is n*Sample time.

The Delay parameter specifies a time delay in seconds and the Gain
parameter specifies a gain that applies to the input signal. Both
parameters are scalars.
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Dialog
Box

K-factor
The ratio of power in the direct path to diffuse power. The ratio is
expressed linearly, not in decibels.

Maximum Doppler shift (Hz)
A positive scalar that indicates the maximum Doppler shift.

Sample time
The period of each element of the input signal.

Delay (s)
A scalar that specifies the propagation delay.

Gain (dB)
A scalar that specifies the gain.

Initial seed
The scalar seed for the Gaussian noise generator.

See Also Rician Noise Generator, Multipath Rayleigh Fading Channel
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References [1] Jeruchim, Michel C., Balaban, Philip, and Shanmugan, K. Sam,
Simulation of Communication Systems, Second edition, New York,
Kluwer Academic/Plenum, 2000.

[2] Jakes, William C., ed. Microwave Mobile Communications. New
York: IEEE Press, 1974.

[3] Lee, William C. Y. Mobile Communications Design Fundamentals,
2nd ed. New York: Wiley, 1993.
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Rician Noise Generator

Purpose Generate Rician distributed noise

Library Noise Generators sublibrary of Comm Sources

Description The Rician Noise Generator block generates Rician distributed noise.
The Rician probability density function is given by
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where:

• σ is the standard deviation of the Gaussian distribution that
underlies the Rician distribution noise

• m2 = mI
2+mQ

2, where mI and mQ are the mean values of two
independent Gaussian components

• I0 is the modified 0th-order Bessel function of the first kind given by
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Note that m and σ are not the mean value and standard deviation for
the Rician noise.

You must specify the Initial seed for the random number generator.
When it is a constant, the resulting noise is repeatable. The vector
length of the Initial seed parameter should equal the number of columns
in a frame-based output or the number of elements in a sample-based
output. The set of numerical parameters above the Initial seed
parameter in the dialog box can consist of vectors having the same
length as the Initial seed, or scalars.
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Initial Seed

The scalar Initial seed parameter initializes the random number
generator that the block uses to generate its Rician-distributed complex
random process. For best results, the Initial seed should be a prime
number greater than 30. Also, if there are other blocks in a model that
have an Initial seed parameter, you should choose different initial
seeds for all such blocks.

You can choose seeds for the Rician Noise Generator block using the
Communications Blockset’srandseed function. At the MATLAB prompt,
enter

randseed

This returns a random prime number greater than 30. Entering
randseed again produces a different prime number. If you supply an
integer argument, randseed always returns the same prime for that
integer. For example, randseed(5) always returns the same answer.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed and Sigma parameters
becomes the number of columns in a frame-based output or the number
of elements in a sample-based vector output. Also, the shape (row or
column) of the Initial seed and Sigma parameters becomes the shape
of a sample-based two-dimensional output signal.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Specification method
Either K-factor or Quadrature components.

Rician K-factor
K = m2/(2σ2), where m is as in the Rician probability density
function. This field appears only if Specification method is
K-factor.

In-phase component (mean), Quadrature component (mean)
The mean values mI and mQ, respectively, of the Gaussian
components. These fields appear only if Specification method is
Quadrature components.

Sigma
The variable σ in the Rician probability density function.
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Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.

Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

See Also Rician Fading Channel

References [1] Proakis, John G., Digital Communications, Third edition, New York,
McGraw Hill, 1995.
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RLS Decision Feedback Equalizer

Purpose Equalize using decision feedback equalizer that updates weights with
RLS algorithm

Library Equalizers

Description The RLS Decision Feedback Equalizer block uses a decision feedback
equalizer and the RLS algorithm to equalize a linearly modulated
baseband signal through a dispersive channel. During the simulation,
the block uses the RLS algorithm to update the weights, once per
symbol. If the Number of samples per symbol parameter is 1, then
the block implements a symbol-spaced equalizer; otherwise, the block
implements a fractionally spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.
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Dialog
Box

Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.
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Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0
and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix
must be N-by-N, where N is the total number of forward and
feedback taps.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.
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References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.

[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also RLS Linear Equalizer, LMS Decision Feedback Equalizer, CMA
Equalizer
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Purpose Equalize using linear equalizer that updates weights using RLS
algorithm

Library Equalizers

Description The RLS Linear Equalizer block uses a linear equalizer and the RLS
algorithm to equalize a linearly modulated baseband signal through
a dispersive channel. During the simulation, the block uses the RLS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.
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Dialog
Box

Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.
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Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Forgetting factor
The forgetting factor of the RLS algorithm, a number between 0
and 1.

Inverse correlation matrix
The initial value for the inverse correlation matrix. The matrix
must be N-by-N, where N is the number of taps.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

Examples See the Adaptive Equalization demo.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle
River, N.J., Prentice-Hall, 1996.
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[3] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York,
McGraw-Hill, 2001.

See Also RLS Decision Feedback Equalizer, LMS Linear Equalizer, CMA
Equalizer
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Purpose Scramble the input signal

Library Sequence Operations

Description The Scrambler block scrambles the input signal, which must be a scalar
or a frame-based column vector. If the Calculation base parameter is
N, then the input values must be integers between 0 and N-1.

One purpose of scrambling is to reduce the length of strings of 0s or
1s in a transmitted signal, since a long string of 0s or 1s may cause
transmission synchronization problems. Below is a schematic of the
scrambler. All adders perform addition modulo N.
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At each time step, the input causes the contents of the registers to shift
sequentially. Each switch in the scrambler is on or off as defined by the
Scramble polynomial parameter. You can specify the polynomial by
listing its coefficients in order of ascending powers of z-1, where p(z-1)
= 1 + p1z

-1 + p2z
-2+..., or by listing the powers of z that appear in the

polynomial with a coefficient of 1. For example p = [1 0 0 0 0 0 1 0 1]
and p = [0 -6 -8] both represent the polynomial p(z-1) = 1 + z-6 + z-8.

The Initial states parameter lists the states of the scrambler’s registers
when the simulation starts. The elements of this vector must be integers
between 0 and N-1. The vector length of this parameter must equal
the order of the scramble polynomial. (If the Scramble polynomial
parameter is a vector that lists the coefficients in order, then the order
of the scramble polynomial is one less than the vector length.)
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Dialog
Box

Calculation base
The calculation base N. The input and output of this block are
integers in the range [0, N-1].

Scramble polynomial
A polynomial that defines the connections in the scrambler.

Initial states
The states of the scrambler’s registers when the simulation starts.

Pair Block Descrambler

See Also PN Sequence Generator

2-512



Sign LMS Decision Feedback Equalizer

Purpose Equalize using decision feedback equalizer that updates weights with
signed LMS algorithm

Library Equalizers

Description The Sign LMS Decision Feedback Equalizer block uses a decision
feedback equalizer and an algorithm from the family of signed LMS
algorithms to equalize a linearly modulated baseband signal through
a dispersive channel. The supported algorithms, corresponding to the
Update algorithm parameter, are

• Sign LMS

• Sign Regressor LMS

• Sign Sign LMS

During the simulation, the block uses the particular signed LMS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.
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• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.
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Dialog
Box

Update algorithm
The specific type of signed LMS algorithm that the block uses to
update the equalizer weights.
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Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number
between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.
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Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

See Also Sign LMS Linear Equalizer, LMS Decision Feedback Equalizer
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Purpose Equalize using linear equalizer that updates weights with signed LMS
algorithm

Library Equalizers

Description The Sign LMS Linear Equalizer block uses a linear equalizer and
an algorithm from the family of signed LMS algorithms to equalize
a linearly modulated baseband signal through a dispersive channel.
The supported algorithms, corresponding to the Update algorithm
parameter, are

• Sign LMS

• Sign Regressor LMS

• Sign Sign LMS

During the simulation, the block uses the particular signed LMS
algorithm to update the weights, once per symbol. If the Number of
samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.
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• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.

Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.
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Dialog
Box

Update algorithm
The specific type of signed LMS algorithm that the block uses to
update the equalizer weights.
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Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Step size
The step size of the signed LMS algorithm.

Leakage factor
The leakage factor of the signed LMS algorithm, a number
between 0 and 1. A value of 1 corresponds to a conventional
weight update algorithm, and a value of 0 corresponds to a
memoryless update algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

Examples See the Adaptive Equalization demo.
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References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

[2] Kurzweil, Jack, An Introduction to Digital Communications, New
York, Wiley, 2000.

See Also Sign LMS Decision Feedback Equalizer, LMS Linear Equalizer
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Purpose Recover symbol timing phase using squaring method

Library Timing Phase Recovery sublibrary of Synchronization

Description The Squaring Timing Recovery block recovers the symbol timing
phase of the input signal using a squaring method. This frame-based,
feedforward, non-data-aided method is similar to the conventional
squaring loop. This block is suitable for systems that use linear
baseband modulation types such as pulse amplitude modulation (PAM),
phase shift keying (PSK) modulation, and quadrature amplitude
modulation (QAM).

Typically, the input to this block is the output of a receive filter that
is matched to the transmitting pulse shape. The input to this block
must be a frame-based column vector of type double or single. The
input represents Symbols per frame symbols using Samples per
symbol samples for each symbol. Typically, Symbols per frame is
approximately 100, Samples per symbol is at least 4, and the input
signal is shaped using a raised cosine filter.

Note The block assumes that the phase offset is constant for all
symbols in the entire input frame. If necessary, use the Buffer block to
reorganize your data into frames over which the phase offset can be
assumed constant. If the assumption of constant phase offset is valid,
then a larger frame length yields a more accurate phase offset estimate.

The block estimates the phase offset for the symbols in each input frame
and applies the estimate uniformly over the input frame. The block
outputs frame-based signals, each containing one sample per symbol.
The frame size of each output therefore equals the Symbols per frame
parameter value. The outputs are as follows:

• The output port labeled Sym gives the result of applying the phase
estimate uniformly over the input frame. This output is the signal
value for each symbol, which can be used for decision purposes.

2-523



Squaring Timing Recovery

• The output port labeled Ph gives the phase estimate for each
symbol in the input frame. All elements in this output frame are
the same nonnegative real number less than the Samples per
symbol parameter value. Noninteger values for the phase estimate
correspond to interpolated values that lie between two values of the
input signal.

Dialog
Box

Symbols per frame
The number of symbols in each frame of the input signal.

Samples per symbol
The number of input samples that represent each symbol. This
must be greater than 1.

Algorithm This block uses a timing estimator that returns
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as the normalized phase between -1/2 and 1/2, where x is the input
vector, L is the Symbols per frame parameter and N is the Samples
per symbol parameter.

For more information about the role that the timing estimator plays
in this block’s algorithm, see “Feedforward Method for Timing Phase
Recovery” in Using the Communications Blockset.

Examples See “Squaring Timing Phase Recovery Example” in Using the
Communications Blockset.

References [1] Oerder, M. and H. Myer, "Digital Filter and Square Timing
Recovery," IEEE Transactions on Communications, Vol. COM-36, No.
5, May 1988, pp. 605-612.

[2] Mengali, Umberto and Aldo N. D’Andrea, Synchronization
Techniques for Digital Receivers, New York, Plenum Press, 1997.

[3] Meyr, Heinrich, Marc Moeneclaey, and Stefan A. Fechtel, Digital
Communication Receivers, Vol 2, New York, Wiley, 1998.

See Also Gardner Timing Recovery, Early-Late Gate Timing Recovery
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SSB AM Demodulator Passband

Purpose Demodulate SSB-AM-modulated data

Library Analog Passband Modulation, in Modulation

Description The SSB AM Demodulator Passband block demodulates a signal that
was modulated using single-sideband amplitude modulation. The input
is a passband representation of the modulated signal. Both the input
and output signals are real sample-based scalar signals.

This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box

Carrier frequency (Hz)
The carrier frequency in the corresponding SSB AM Modulator
Passband block.

Initial phase (rad)
The phase offset, θ , of the modulated signal.
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Lowpass filter design method
The method used to generate the filter. Available methods are
Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic.

Filter order
The order of the lowpass digital filter specified in the Lowpass
filter design method field .

Cutoff frequency
The cutoff frequency of the lowpass digital filter specified in the
Lowpass filter design method field in Hertz.

Passband ripple
Applies to Chebyshev type I and Elliptic filters only. This is
peak-to-peak ripple in the passband in dB.

Stopband ripple
Applies to Chebyshev type II and Elliptic filters only. This is the
peak-to-peak ripple in the stopband in dB.

Pair Block SSB AM Modulator Passband

See Also DSB AM Demodulator Passband, DSBSC AM Demodulator Passband
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Purpose Modulate using single-sideband amplitude modulation

Library Analog Passband Modulation, in Modulation

Description The SSB AM Modulator Passband block modulates using
single-sideband amplitude modulation with a Hilbert transform filter.
The output is a passband representation of the modulated signal. Both
the input and output signals are real sample-based scalar signals.

SSB AM Modulator Passband transmits either the lower or upper
sideband signal, but not both. To control which sideband it transmits,
use the Sideband to modulate parameter.

If the input is u(t) as a function of time t, then the output is

u t f t u t f tc c( ) cos( ) ( )sin( )+ +θ θ∓

where:

• fc is the Carrier frequency parameter.

• θ is the Initial phase parameter.

• û(t) is the Hilbert transform of the input u(t).

• The minus sign indicates the upper sideband and the plus sign
indicates the lower sideband.

Hilbert Tranform Filter

This block uses the Analytic Signal block from the Signal Processing
blockset Transforms library.

The Analytic Signal block computes the complex analytic signal
corresponding to each channel of the real M-by-N input, u

y u j u= + Η{ }

where j = −1 and Η{} denotes the Hilbert transform. The real part
of the output in each channel is a replica of the real input in that
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channel; the imaginary part is the Hilbert transform of the input. In
the frequency domain, the analytic signal retains the positive frequency
content of the original signal while zeroing-out negative frequencies
and doubling the DC component.

The block computes the Hilbert transform using an equiripple FIR
filter with the order specified by the Filter order parameter, n. The
linear phase filter is designed using the Remez exchange algorithm, and
imposes a delay of n/2 on the input samples.

For best results, use a carrier frequency which is estimated to be
larger than 10% of your input signal’s sample time. This is due to the
implementation of the Hilbert transform by means of a filter.

In the following example, we sample a 10Hz input signal at 8000
samples per second. We then designate a Hilbert Transform filter of
order 100. Below is the response of the Hilbert Transform filter as
returned by fvtool.
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Note the bandwidth of the filter’s magnitude response. By choosing
a carrier frequency larger than 10% (but less than 90%) of the input
signal’s sample time (8000 samples per second, in this example) or
equivalently, a carrier frequency larger than 400Hz, we ensure that
the Hilbert Transform Filter will be operating in the flat section of the
filter’s magnitude response (shown in blue), and that our modulated
signal will have the desired magnitude and form.

Typically, an appropriate Carrier frequency value is much higher
than the highest frequency of the input signal. By the Nyquist sampling
theorem, the reciprocal of the model’s sample time (defined by the
model’s signal source) must exceed twice the Carrier frequency
parameter.
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This block works only with real inputs of type double. This block is not
suited to be placed inside a triggered subsystem.

Dialog
Box

Carrier frequency (Hz)
The frequency of the carrier.

Initial phase (rad)
The phase offset, θ , of the modulated signal.

Sideband to modulate
This parameter specifies whether to transmit the upper or lower
sideband.

Hilbert Transform filter order
The length of the FIR filter used to compute the Hilbert transform.

Pair Block SSB AM Demodulator Passband

See Also DSB AM Modulator Passband, DSBSC AM Modulator Passband;
hilbiir (Communications Toolbox)
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References [1] Peebles, Peyton Z, Jr. Communication System Principles. Reading,
Mass.: Addison-Wesley, 1976.
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Uniform Noise Generator

Purpose Generate uniformly distributed noise between upper and lower bounds

Library Noise Generators sublibrary of Comm Sources

Description The Uniform Noise Generator block generates uniformly distributed
noise. The output data of this block is uniformly distributed between
the specified lower and upper bounds. The upper bound must be greater
than or equal to the lower bound.

You must specify the Initial seed in the simulation. When it is a
constant, the resulting noise is repeatable.

If all the elements of the output vector are to be independent and
identically distributed (i.i.d.), then you can use a scalar for the Noise
lower bound and Noise upper bound parameters. Alternatively, you
can specify the range for each element of the output vector individually,
by using vectors for the Noise lower bound and Noise upper bound
parameters. If the bounds are vectors, then their length must equal the
length of the Initial seed parameter.

Attributes of Output Signal

The output signal can be a frame-based matrix, a sample-based row
or column vector, or a sample-based one-dimensional array. These
attributes are controlled by the Frame-based outputs, Samples
per frame, and Interpret vector parameters as 1-D parameters.
See “Signal Attribute Parameters for Random Sources” in Using the
Communications Blockset for more details.

The number of elements in the Initial seed parameter becomes the
number of columns in a frame-based output or the number of elements
in a sample-based vector output. Also, the shape (row or column) of
the Initial seed parameter becomes the shape of a sample-based
two-dimensional output signal.
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Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Noise lower bound, Noise upper bound
The lower and upper bounds of the interval over which noise is
uniformly distributed.

Initial seed
The initial seed value for the random number generator.

Sample time
The period of each sample-based vector or each row of a
frame-based matrix.

Frame-based outputs
Determines whether the output is frame-based or sample-based.
This box is active only if Interpret vector parameters as 1-D
is unchecked.
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Samples per frame
The number of samples in each column of a frame-based output
signal. This field is active only if Frame-based outputs is
checked.

Interpret vector parameters as 1-D
If this box is checked, then the output is a one-dimensional signal.
Otherwise, the output is a two-dimensional signal. This box is
active only if Frame-based outputs is unchecked.

See Also Random Source (Signal Processing Blockset); rand (built-in MATLAB
function)

2-535



Unipolar to Bipolar Converter

Purpose Map unipolar signal in range [0, M-1] into bipolar signal

Library Utility Blocks

Description The Unipolar to Bipolar Converter block maps the unipolar input signal
to a bipolar output signal. If the input consists of integers between 0
and M-1, where M is the M-ary number parameter, then the output
consists of integers between -(M-1) and M-1. If M is even, then the
output is odd, and vice-versa.

The table below shows how the block’s mapping depends on the
Polarity parameter.

Polarity Parameter Value
Output Corresponding to
Input Value of k

Positive 2k-(M-1)

Negative -2k+(M-1)

Dialog
Box

M-ary number
The number of symbols in the bipolar or unipolar alphabet.

Polarity
A value of Positive (respectively, Negative) causes the block to
maintain (respectively, reverse) the relative ordering of symbols
in the alphabets.
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Examples If the input is [0; 1; 2; 3], the M-ary number parameter is 4, and
the Polarity parameter is Positive, then the output is [-3; -1; 1; 3].
Changing the Polarity parameter to Negative changes the output
to [3; 1; -1; -3].

Pair Block Bipolar to Unipolar Converter
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Purpose Equalize using decision feedback equalizer that updates weights with
variable-step-size LMS algorithm

Library Equalizers

Description The Variable Step LMS Decision Feedback Equalizer block uses a
decision feedback equalizer and the variable-step-size LMS algorithm
to equalize a linearly modulated baseband signal through a dispersive
channel. During the simulation, the block uses the variable-step-size
LMS algorithm to update the weights, once per symbol. If the Number
of samples per symbol parameter is 1, then the block implements a
symbol-spaced equalizer; otherwise, the block implements a fractionally
spaced equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap of the forward filter.
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Dialog
Box
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Number of forward taps
The number of taps in the forward filter of the decision feedback
equalizer.

Number of feedback taps
The number of taps in the feedback filter of the decision feedback
equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of forward
taps in the equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at
the beginning of the simulation.

Increment step size
The increment by which the step size changes from iteration to
iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the variable-step-size LMS algorithm,
a number between 0 and 1. A value of 1 corresponds to
a conventional weight update algorithm, and a value of 0
corresponds to a memoryless update algorithm.

Initial weights
A vector that concatenates the initial weights for the forward and
feedback taps.
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Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.

Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current forward and
feedback weights, concatenated into one vector.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

See Also Variable Step LMS Linear Equalizer, LMS Decision Feedback Equalizer
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Purpose Equalize using linear equalizer that updates weights with
variable-step-size LMS algorithm

Library Equalizers

Description The Variable Step LMS Linear Equalizer block uses a linear equalizer
and the variable-step-size LMS algorithm to equalize a linearly
modulated baseband signal through a dispersive channel. During the
simulation, the block uses the variable-step-size LMS algorithm to
update the weights, once per symbol. If the Number of samples per
symbol parameter is 1, then the block implements a symbol-spaced
equalizer; otherwise, the block implements a fractionally spaced
equalizer.

Input and Output Signals

The port labeled Input receives the signal you want to equalize, as
a scalar or a frame-based column vector. The port labeled Desired
receives a training sequence whose length is less than or equal to the
number of symbols in the Input signal. Valid training symbols are
those listed in the Signal constellation vector.

The port labeled Equalized outputs the result of the equalization
process.

You can configure the block to have one or more of these extra ports:

• Mode input, as described in “Controlling the Use of Training or
Decision-Directed Mode” in Using the Communications Blockset.

• Err output for the error signal, which is the difference between the
Equalized output and the reference signal. The reference signal
consists of training symbols in training mode, and detected symbols
otherwise.

• Weights output, as described in “Retrieving the Weights and Error
Signal” in Using the Communications Blockset.
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Decision-Directed Mode and Training Mode

To learn the conditions under which the equalizer operates in training
or decision-directed mode, see “Using Adaptive Equalizers” in Using the
Communications Blockset.

Equalizer Delay

For proper equalization, you should set the Reference tap parameter
so that it exceeds the delay, in symbols, between the transmitter’s
modulator output and the equalizer input. When this condition is
satisfied, the total delay, in symbols, between the modulator output
and the equalizer output is equal to

1+(Reference tap-1)/(Number of samples per symbol)

Because the channel delay is typically unknown, a common practice is
to set the reference tap to the center tap.
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Number of taps
The number of taps in the filter of the linear equalizer.

Number of samples per symbol
The number of input samples for each symbol.

Signal constellation
A vector of complex numbers that specifies the constellation for
the modulation.

Reference tap
A positive integer less than or equal to the number of taps in the
equalizer.

Initial step size
The step size that the variable-step-size LMS algorithm uses at
the beginning of the simulation.

Increment step size
The increment by which the step size changes from iteration to
iteration

Minimum step size
The smallest value that the step size can assume.

Maximum step size
The largest value that the step size can assume.

Leakage factor
The leakage factor of the LMS algorithm, a number between 0
and 1. A value of 1 corresponds to a conventional weight update
algorithm, and a value of 0 corresponds to a memoryless update
algorithm.

Initial weights
A vector that lists the initial weights for the taps.

Mode input port
If you check this box, the block has an input port that enables you
to toggle between training and decision-directed mode.
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Output error
If you check this box, the block outputs the error signal, which is
the difference between the equalized signal and the reference
signal.

Output weights
If you check this box, the block outputs the current weights.

Examples See the Adaptive Equalization demo.

References [1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications,
Chichester, England, Wiley, 1998.

See Also Variable Step LMS Decision Feedback Equalizer, LMS Linear Equalizer
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Viterbi Decoder

Purpose Decode convolutionally encoded data using Viterbi algorithm

Library Convolutional sublibrary of Channel Coding

Description The Viterbi Decoder block decodes input symbols to produce binary
output symbols. This block can process several symbols at a time for
faster performance.

Input and Output Sizes

If the convolutional code uses an alphabet of 2n possible symbols, then
this block’s input vector length is L*n for some positive integer L.
Similarly, if the decoded data uses an alphabet of 2k possible output
symbols, then this block’s output vector length is L*k. The integer L is
the number of frames that the block processes in each step.

The input can be either a sample-based vector with L = 1, or a
frame-based column vector with any positive integer for L.

The block supports non-double data typed input and output signals
based on the decision type selected from the mask. For Unquantized
decisions, the block accepts double or single typed inputs. For Hard
decisions, the block the input data types double, single, boolean,
int8, uint8, int16, uint16, int32, and uint32. For Soft decisions, the
block accepts the input data types double, single, int8, uint8, int16,
uint16, int32, and uint32.

Input Values and Decision Types

The entries of the input vector are either bipolar, binary, or integer
data, depending on the Decision type parameter.

Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of
Values

Unquantized Real numbers +1: logical zero

-1: logical one
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Decision type
Parameter

Possible Entries in
Decoder Input

Interpretation of
Values

Hard Decision 0, 1 0: logical zero

1: logical one

Soft Decision Integers between 0
and 2b-1, where b
is the Number of
soft decision bits
parameter

0: most confident
decision for logical
zero

2b-1: most confident
decision for logical
one

Other values
represent less
confident decisions

To illustrate the soft decision situation more explicitly, the table below
lists interpretations of values for 3-bit soft decisions.

Input Value Interpretation

0 Most confident zero

1 Second most confident zero

2 Third most confident zero

3 Least confident zero

4 Least confident one

5 Third most confident one

6 Second most confident one

7 Most confident one
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Operation Modes for Frame-Based Inputs

If the input signal is frame-based, then the block has three possible
methods for transitioning between successive frames. The Operation
mode parameter controls which method the block uses:

• In Continuous mode, the block saves its internal state metric at the
end of each frame, for use with the next frame. Each traceback path
is treated independently.

• In Truncated mode, the block treats each frame independently. The
traceback path starts at the state with the best metric and always
ends in the all-zeros state. This mode is appropriate when the
corresponding Convolutional Encoder block has its Reset parameter
set to On each frame.

• In Terminated mode, the block treats each frame independently,
and the traceback path always starts and ends in the all-zeros state.
This mode is appropriate when the uncoded message signal (that is,
the input to the corresponding Convolutional Encoder block) has
enough zeros at the end of each frame to fill all memory registers of
the encoder. If the encoder has k input streams and constraint length
vector constr (using the polynomial description), then "enough"
means k*max(constr-1).

In the special case when the frame-based input signal contains only one
symbol, the Continuous mode is most appropriate.

Traceback Depth and Decoding Delay

The Traceback depth parameter, D, influences the decoding delay.
The decoding delay is the number of zero symbols that precede the first
decoded symbol in the output.

• If the input signal is sample-based, then the decoding delay consists
of D zero symbols

• If the input signal is frame-based and the Operation mode
parameter is set to Continuous, then the decoding delay consists of
D zero symbols
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• If the Operation mode parameter is set to Truncated or
Terminated, then there is no output delay and the Traceback depth
parameter must be less than or equal to the number of symbols in
each frame.

If the code rate is 1/2, then a typical Traceback depth value is about
five times the constraint length of the code.

Reset Port

The reset port is usable only when the Operation mode parameter is
set to Continuous. Checking the Reset input check box causes the
block to have an additional input port, labeled Rst. When the Rst input
is nonzero, the decoder returns to its initial state by configuring its
internal memory as follows:

• Sets the all-zeros state metric to zero

• Sets all other state metrics to the maximum value

• Sets the traceback memory to zero

Using a reset port on this block is analogous to setting the Reset
parameter in the Convolutional Encoder block to On nonzero Rst
input.

The reset port supports double or boolean typed signals.
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Dialog
Box

Trellis structure
MATLAB structure that contains the trellis description of the
convolutional encoder. Use the same value here and in the
corresponding Convolutional Encoder block.

Decision type
Unquantized, Hard Decision, or Soft Decision.

Number of soft decision bits
The number of soft decision bits used to represent each input. This
field is active only when Decision type is set to Soft Decision.

Traceback depth
The number of trellis branches used to construct each traceback
path.

Operation mode
Method for transitioning between successive input frames. For
frame-based input, the choices are Continuous, Terminated, and
Truncated. Sample-based input must use the Continuous mode.
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Reset input
When you check this box, the decoder has a second input port
labeled Rst. Providing a nonzero input value to this port causes
the block to set its internal memory to the initial state before
processing the input data.

Output data type
The output signal’s data type can be double, single, boolean,
int8, uint8, int16, uint16, int32, or uint32.

See Also Convolutional Encoder, APP Decoder

References [1] Clark, George C. Jr. and J. Bibb Cain. Error-Correction Coding for
Digital Communications. New York: Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein.
Data Communications Principles. New York: Plenum, 1992.

[3] Heller, Jerrold A. and Irwin Mark Jacobs. "Viterbi Decoding
for Satellite and Space Communication." IEEE Transactions on
Communication Technology, vol. COM-19, October 1971. 835-848.
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Walsh Code Generator

Purpose Generate Walsh code from orthogonal set of codes

Library Sequence Generators sublibrary of Comm Sources

Description Walsh codes are defined as a set of N codes, denoted Wj, for j = 0, 1, ... ,
N - 1, which have the following properties:

• Wj takes on the values +1 and -1.

• Wj[0] = 1 for all j.

• Wj has exactly j zero crossings, for j = 0, 1, ... , N - 1.

• W W
j k

N j kj k
T =

≠
=

⎧
⎨
⎩

0

• Each code Wj is either even or odd with respect to its midpoint.

Walsh codes are defined using a Hadamard matrix of order N. The
Walsh Code Generator block outputs a row of the Hadamard matrix
specified by the Walsh code index, which must be an integer in the
range [0, ..., N - 1]. If you set Walsh code index equal to an integer j,
the output code has exactly j zero crossings, for j = 0, 1, ... , N - 1.

Note, however, that the indexing in the Walsh Code Generator block is
different than the indexing in the Hadamard Code Generator block. If
you set the Walsh code index in the Walsh Code Generator block and
the Code index parameter in the Hadamard Code Generator block,
the two blocks output different codes.

2-554



Walsh Code Generator

Dialog
Box

Opening this dialog box causes a running simulation to pause.
See “Changing Source Block Parameters” in the online Simulink
documentation for details.

Code length
Integer scalar that is a power of 2 specifying the length of the
output code.

Code index
Integer scalar in the range [0, 1, ... , N - 1], where N is the Code
length, specifying the number of zero crossings in the output code.

Sample time
A positive real scalar specifying the sample time of the output
signal.

Frame-based outputs
When checked, the block outputs a frame-based signal. When
cleared, the block outputs a [1] unoriented scalar.
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Samples per frame
The number of samples in a frame-based output signal. This field
is active only if you select the Frame-based outputs check box.
If Samples per frame is greater than the Code length, the
code is cyclically repeated.

Output data type
The output type of the block can be specified as an int8 or double.
By default, the block sets this to double.

See also Hadamard Code Generator, OVSF Code Generator
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Windowed Integrator

Purpose Integrate over time window of fixed length

Library Comm Filters

Description The Windowed Integrator block creates cumulative sums of the input
signal values over a sliding time window of fixed length. If the
Integration period parameter is N and the input samples are denoted
by x(1), x(2), x(3),..., then the nth output sample is the sum of the x(k)
values for k between n-N+1 and n. In cases where n-N+1 is less than 1,
the block uses an initial condition of 0 to represent those samples.

The input can be either a scalar or a frame-based matrix. If the input is
frame-based, then the block processes each column independently. The
output has the same sample time and matrix size as the input. double,
single, and fixed-point data types are supported.

Dialog
Box

Integration period
The length of the interval of integration, measured in samples.

Examples If Integration period is 3 and the input signal is a ramp (1, 2, 3, 4,...),
then some of the sums that form the output of this block are as follows:

• 0+0+1 = 1

• 0+1+2 = 3

• 1+2+3 = 6
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• 2+3+4 = 9

• 3+4+5 = 12

• 4+5+6 = 15

• etc.

The zeros in the first few sums represent initial conditions. If the input
signal is a sample-based scalar, then the values 1, 3, 6,... are successive
values of the scalar output signal. If the input signal is a frame-based
column vector, then the values 1, 3, 6,... are organized into output
frames that have the same vector length as the input frames.

See Also Integrate and Dump, Discrete-Time Integrator (Simulink)
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Functions — Alphabetical
List

This section contains detailed references pages for each of the functions in the
Communications Blockset.



comm_links

Purpose Display and return library link information for Communications
Blockset blocks.

Syntax comm_links
comm_links(sys)
comm_links(sys,color)

Description comm_links returns a structure with two elements. Each element
contains a cell array of strings containing names of library blocks in the
current system. The blocks are grouped into two categories: obsolete
and current. Blocks at all levels of the model are analyzed.

comm_links(sys) works as above on the named system sys, instead of
the current system.

comm_links(sys,color) additionally colors all obsolete blocks
according to the specified color. color is one of the following strings:
’blue’, ’green’, ’red’, ’cyan’, ’magenta’, ’yellow’, or ’black’.

Obsolete blocks are blocks that are no longer supported. They might or
might not work properly.

Current blocks are supported and represent the latest block
functionality.

See Also liblinks (Signal Processing Blockset), commliblist
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commlib

Purpose Open the main Communications Blockset library

Syntax commlib
commlib(n)
commlib n

Description commlib opens the current version of the main Communications
Blockset library.

commlib(n) opens version number n of the main Communications
Blockset library, where n can be either '1.5' or '3.2'. Version 1.5
refers to the Simulink portion of the Communications Toolbox 1.5
(Release 11.1).

commlib n is the same as commlib(n).

See Also simulink (Simulink), dsplib (Signal Processing Blockset)
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commstartup

Purpose Default Simulink model settings for Communications Blockset

Syntax commstartup

Description commstartup changes the default Simulink model settings to values
more appropriate for the simulation of communication systems. The
changes apply to new models that you create later in the MATLAB
session, but not to previously created models.

Note The Signal Processing Blockset includes a similar dspstartup
script, which assigns different model settings. For modeling
communication systems, you should use commstartup alone.

To install the communications-related model settings each time you
start MATLAB, invoke commstartup from your startup.m file.

To be more specific, the settings in commstartup cause models to:

• Use the variable-step discrete solver in single-tasking mode

• Use starting and ending times of 0 and Inf, respectively

• Avoid producing a warning or error message for inherited sample
times in source blocks

• Set the Simulink Boolean logic signals parameter to Off

• Avoid saving output or time information to the workspace

• Produce an error upon detecting an algebraic loop

• Inline parameters if you use the Model Reference feature of Simulink

See Also startup
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Purpose Generate prime numbers for use as random number seeds

Syntax out = randseed
out = randseed(state)
out = randseed(state,m)
out = randseed(state,m,n)
out = randseed(state,m,n,rmin)
out = randseed(state,m,n,rmin,rmax)

Description The randseed function is designed for producing random prime
numbers that work well as seeds for random source blocks or noisy
channel blocks in the Communications Blockset.

out = randseed generates a random prime number between 31 and
217-1, using the MATLAB function rand.

out = randseed(state) generates a random prime number after
setting the state of rand to the positive integer state. This syntax
produces the same output for a particular value of state.

out = randseed(state,m) generates a column vector of m random
primes.

out = randseed(state,m,n) generates an m-by-n matrix of random
primes.

out = randseed(state,m,n,rmin) generates an m-by-n matrix of
random primes between rmin and 217-1.

out = randseed(state,m,n,rmin,rmax) generates an m-by-n matrix
of random primes between rmin and rmax.

Examples To generate a two-element sample-based row vector of random bits using
the Bernoulli Random Binary Generator block, you can set Probability
of a zero to [0.1 0.5] and set Initial seed to randseed(391,1,2).

To generate three streams of random data from three different blocks in
a single model, you can define out = randseed(93,3) in the MATLAB
workspace and then set the three blocks’ Initial seed parameters to
out(1), out(2), and out(3), respectively.
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See Also rand, primes
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saveas_commblks

Purpose Resave Communications Blockset models to a prior version

Syntax flag = saveas_commblks(sys,new_sys,version)

Description saveas_commblks is designed to replace Communications Blockset
R14SP2 (version 3.1) blocks with R14 (version 3.0) or R14SP1 (version
3.0.1) blocks.

flag = saveas_commblks(sys,new_sys,version) saves the model
sys to a previous version specified by version, with the name new_sys.
version must be either R14 or R14SP1. flag is true if the operation is
successful, else it is false. It displays the list of blocks that are updated
in the command window.

saveas_commblks updates the following blocks in the model:

• AWGN Channel

• Binary Symmetric Channel

• Rician Fading Channel

• Voltage-Controlled Oscillator or Continuous-Time VCO

• All blocks from the AM sub-library of the Digital Baseband
Modulation library (commdigbbndam3). These blocks are replaced by
the corresponding blocks from the old AM library (commdigbbndam2).

• All blocks from the PM sub-library of the Digital Baseband
Modulation library (commdigbbndpm3). These blocks are replaced by
the corresponding blocks from the old PM library (commdigbbndpm2).

• Multipath Rayleigh Fading Channel block from the Channels library
(commchan3). These blocks are replaced by the Multipath Rayleigh
Fading Channel block from the old Channels library (commchan2).
Note that the default parameters of this block are used after the
model is saved.

Example success =
saveas_commblks('myCommsSystem','myCommsSystemR14sp1','R14SP1')
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saves the system myCommsSystem to one using the blocks in the R14SP1
version of the Communications Blockset, and returns true on
successful operation.
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IndexA
A-Law Compressor block 2-2
A-Law Expander block 2-4
Algebraic Deinterleaver block 2-6
Algebraic Interleaver block 2-9
Align Signals block 2-12
APP Decoder block 2-15
AWGN Channel block 2-19

B
Barker Code Generator block 2-25
Baseband PLL block 2-27
BCH Decoder block 2-29
BCH Encoder block 2-31
Bernoulli Binary Generator block 2-33
Binary Cyclic Decoder block 2-36
Binary Cyclic Encoder block 2-38
Binary Error Pattern Generator block 2-40
Binary Linear Decoder block 2-48
Binary Linear Encoder block 2-50
Binary Symmetric Channel block 2-55
Binary-Input RS Encoder block 2-43
Binary-Output RS Decoder block 2-51
Bipolar to Unipolar Converter block 2-57
Bit to Integer Converter block 2-59
block coding library

reference for 1-10
block interleaving library

reference for 1-15
BPSK Demodulator Baseband block 2-61
BPSK Modulator Baseband block 2-62

C
carrier phase recovery library 1-33
Channels library

reference for 1-29
Charge Pump PLL block 2-63
CMA Equalizer block 2-66

Comm Sinks library
reference for 1-7

Comm Sources library
reference for 1-3

comm_links function 3-2
commlib function 3-3
commstartup function 3-4
Communication Filters library

reference for 1-27
Complex Phase Difference block 2-70
Complex Phase Shift block 2-71
convolutional coding library

reference for 1-12
Convolutional Deinterleaver block 2-74
Convolutional Encoder block 2-76
Convolutional Interleaver block 2-79
convolutional interleaving library

reference for 1-17
CPFSK Demodulator Baseband block 2-82
CPFSK Modulator Baseband block 2-86
CPM Demodulator Baseband block 2-89
CPM Modulator Baseband block 2-94
CPM Phase Recovery block 2-99
CRC library

reference for 1-13
CRC-N Generator block 2-102
CRC-N Syndrome Detector block 2-105

D
Data Mapper block 2-108
DBPSK Demodulator Baseband block 2-111
DBPSK Modulator Baseband block 2-113
Deinterlacer block 2-115
Derepeat block 2-117
Descrambler block 2-120
Differential Decoder block 2-122
Differential Encoder block 2-124
digital modulation libraries

reference for 1-19
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Discrete-Time Eye Diagram Scope block 2-126
Discrete-Time Scatter Plot Scope block 2-135
Discrete-Time Signal Trajectory Scope

block 2-143
Discrete-Time VCO block 2-150
DQPSK Demodulator Baseband block 2-152
DQPSK Modulator Baseband block 2-154
DSB AM Demodulator Passband block 2-158
DSB AM Modulator Passband block 2-161
DSBSC AM Demodulator Passband

block 2-163
DSBSC AM Modulator Passband block 2-166

E
Early-Late Gate Timing Recovery block 2-168
Equalizers library

reference for 1-36
Error Detection and Correction library

reference for 1-10
Error Rate Calculation block 2-172

F
Find Delay block 2-181
FM Demodulator Passband block 2-186
FM Modulator Passband block 2-189
Free Space Path Loss block 2-191

G
Gardner Timing Recovery block 2-193
Gaussian Filter block 2-198
Gaussian Noise Generator block 2-202
General Block Deinterleaver block 2-206
General Block Interleaver block 2-208
General CRC Generator block 2-210
General CRC Syndrome Detector block 2-214
General Multiplexed Deinterleaver

block 2-218
General Multiplexed Interleaver block 2-220

General QAM Demodulator Baseband
block 2-222

General QAM Modulator Baseband
block 2-223

General TCM Decoder block 2-225
General TCM Encoder block 2-229
GMSK Demodulator Baseband block 2-233
GMSK Modulator Baseband block 2-236
Gold Sequence Generator block 2-239

H
Hadamard Code Generator block 2-246
Hamming Decoder block 2-249
Hamming Encoder block 2-251
Helical Deinterleaver block 2-253
Helical Interleaver block 2-256

I
I/Q Imbalance block 2-283
Ideal Rectangular Pulse Filter block 2-259
Insert Zero block 2-263
Integer to Bit Converter block 2-275
Integer-Input RS Encoder block 2-266
Integer-Output RS Decoder block 2-271
Integrate and Dump block 2-277
Interlacer block 2-282
Interleaving library

reference for 1-15

K
Kasami Sequence Generator block 2-290

L
Linearized Baseband PLL block 2-297
LMS Decision Feedback Equalizer block 2-299
LMS Linear Equalizer block 2-304
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M
M-DPSK Demodulator Baseband block 2-318
M-DPSK Modulator Baseband block 2-321
M-FSK Demodulator Baseband block 2-336
M-FSK Modulator Baseband block 2-339
M-PAM Demodulator Baseband block 2-349
M-PAM Modulator Baseband block 2-352
M-PSK Demodulator Baseband block 2-356
M-PSK Modulator Baseband block 2-359
M-PSK Phase Recovery block 2-364
M-PSK TCM Decoder block 2-367
M-PSK TCM Encoder block 2-371
Matrix Deinterleaver block 2-309
Matrix Helical Scan Deinterleaver block 2-311
Matrix Helical Scan Interleaver block 2-313
Matrix Interleaver block 2-316
Memoryless Nonlinearity block 2-325
MLSE Equalizer block 2-342
Modulation library

reference for 1-19
MSK Demodulator Baseband block 2-374
MSK Modulator Baseband block 2-377
MSK-Type Signal Timing Recovery block 2-379
Mu-Law Compressor block 2-387
Mu-Law Expander block 2-389
Mueller-Muller Timing Recovery block 2-383
Multipath Rayleigh Fading Channel

block 2-391

N
Normalized LMS Decision Feedback Equalizer

block 2-395
Normalized LMS Linear Equalizer block 2-400

O
OQPSK Demodulator Baseband block 2-405
OQPSK Modulator Baseband block 2-407
OVSF Code Generator block 2-410

P
Phase Noise block 2-423
Phase/Frequency Offset block 2-415
Phase-Locked Loop block 2-420
PM Demodulator Passband block 2-427
PM Modulator Passband block 2-430
PN Sequence Generator block 2-432
Poisson Integer Generator block 2-441
Puncture block 2-444

Q
QPSK Demodulator Baseband block 2-447
QPSK Modulator Baseband block 2-449
Quantizing Decoder block 2-452
Quantizing Encoder block 2-454

R
Raised Cosine Receive Filter block 2-456
Raised Cosine Transmit Filter block 2-461
Random Deinterleaver block 2-466
Random Integer Generator block 2-468
Random Interleaver block 2-471
randseed function 3-5
Rayleigh Noise Generator block 2-473
Receiver Thermal Noise block 2-476
Rectangular QAM Demodulator Baseband

block 2-479
Rectangular QAM Modulator Baseband

block 2-482
Rectangular QAM TCM Decoder block 2-486
Rectangular QAM TCM Encoder block 2-490
Rician Fading Channel block 2-494
Rician Noise Generator block 2-497
RLS Decision Feedback Equalizer block 2-501
RLS Linear Equalizer block 2-506
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S
saveas_commblks function 3-7
Scrambler block 2-511
Sequence Operations library 1-38
Sign LMS Decision Feedback Equalizer

block 2-513
Sign LMS Linear Equalizer block 2-518
sinks library

reference for 1-7
source code for blocks 1-2
Source Coding library

reference for 1-8
sources library

reference for 1-3
Squaring Timing Recovery block 2-523
SSB AM Demodulator Passband block 2-526
SSB AM Modulator Passband block 2-528
synchronization components library 1-35
Synchronization library

reference for 1-32

T
timing phase recovery library 1-34

U
Uniform Noise Generator block 2-533
Unipolar to Bipolar Converter block 2-536
Utility Blocks library 1-40

V
Variable Step LMS Decision Feedback

Equalizer block 2-538
Variable Step LMS Linear Equalizer

block 2-543
Viterbi Decoder block 2-548
Voltage-Controlled Oscillator block 2-72

W
Walsh Code Generator block 2-554
Windowed Integrator block 2-557
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